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Example: Segregation, Inequality, and Poverty

Does residential segregation lead to racialised economic outcomes?

Ananat (2011) studies this relationship at the city-level in the USA,
focused on two outcomes:

1. Black poverty rates

2. Black-white income inequality

But this is a very hard question to study. Why?

Hard to imagine that there are not many confounders:

Residential segregation has numerous causes

Some of those causes must surely cause racialised economic outcomes

These problems become especially acute over long time periods
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Example: Segregation, Inequality, and Poverty

The design problem in the author’s own words:

Enter instrumental variables (IV)...
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Instrumental Variables: Graphical Intuition

D Y

U

Z

Idea: Find some variable Z that induces ‘as-if random‘ variation in D.

Study only that variation in D, and how to is related to Y .
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Example: Segregation, Inequality, and Poverty
Ananat (2011) proposes the railroad division index (RDI):

1. Digitize 19th century city maps

2. From each city centre, draw a 4km-radius circle

3. Measure how dispersed the city’s area is in terms of neighborhoods

RDI should affect post-Great Migration segregation
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Example: ‘First Stage’ and Falsification

Focus on column 1: This is the ‘first stage’, how RDI affects segregation

Note also columns 2-7: Essentially balance checks. (SOO anyone?)
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Example: IV Results

Focus on columns 3 and 4: These are the IV estimates (estimated using
two-stage least squares or 2SLS, more later)

If assumptions satisfied, these give the effect of that variation in
segregation induced by RDI on the outcome.
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Instrumental Variables: Back to Basics

The motivating example is a case of ‘classical’ instrumental variables in an
observational study.

We are going to learn IV from the ‘modern’ perspective, which subsumes
the classical perspective.

To do this, we will begin by studying IV in experimental settings with just
a binary treatment and a binary instrument.

Next week we will then cover some extensions of IV
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Noncompliance in Randomised Experiments

Let’s begin by returning to randomised experiments (it’s safe there!).

Randomised experiments can have compliance problems: Despite
randomisation, units may control whether they are actually treated.

Canonical example: Non-compliance in JTPA Experiment

Not Enrolled Enrolled Total
in Training in Training

Assigned to Control 3,663 54 3,717

Assigned to Training 2,683 4,804 7,487

Total 6,346 4,858 11,204

Problem: This is yet another selection problem, our age-old concern!

Implication: Even in a randomised experiment, we may not be able to
näıvely compare groups...
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“Look Bart, I have to practice my saxophone, and you can’t stop me!”

MY457 Special Week Winter Term 2024 14 / 35



Instrumental Variables: Setup

Assume an encouragement: Zi ∈ {0, 1}

We now define treatment potential outcomes under Z : Dzi ∈ {D1i ,D0i}
1. Dzi = 1: would receive the treatment if Zi = z

2. Dzi = 0: would not receive the treatment if Zi = z

e.g., D1i = 1 encouraged to take treatment and takes treatment

Note: encouragement ̸= treatment

Instead: treatment = f (encouragement)

We can also define our outcome potential outcomes: Y(Zi ,DZi i
)i

What is observed in a given trial?

Observed treatment indicator: Di = DZi i for Zi = z

Observed outcome of Yi : Yi = Y(Zi ,DZi i
)i for Zi = z

Thus observed outcome of Yi can also be written as Yi = YZi i
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Compliance Types

Given our setup, we can define four compliance types:

Unit i is a complier if: D1i = 1 and D0i = 0

and a non-complier if

 Always-takers: D1i = D0i = 1
Never-takers: D1i = D0i = 0
Defiers: D1i = 0 and D0i = 1

Or, written as principal strata:

Encouragement
Zi = 1 Zi = 0

T
re
at
m
en
t

Di = 1 Complier/Always-taker Defier/Always-taker

Di = 0 Defier/Never-taker Complier/Never-taker
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Causal Estimand: The ITT

Definition (Intention-to-treat, ITT)

τITT =
1

N

N∑
i=1

(Y(1,D1i )i − Y(0,D0i )i )

or equivalently
τITT = E[Y(1,D1i )i − Y(0,D0i )i ]

Read: Effect of encouragement on outcome (regardless of treatment status)

Cannot force all subjects to take the (randomly) assigned treatment status, and
with self-selection into the treatment/control groups τITT ̸= τATE

In experiments we call this an encouragement design, with randomised Z such
that {Yzd}⊥⊥Z . In such settings, our identification result is:

τITT = E[Yi | Zi = 1]− E[Yi | Zi = 0]
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IV: Assumptions

The ITT only allows us to say something about the effect of Z on Y , but
what about the effect of D?

Idea: Perhaps we can (under some assumptions) express the effect of D on
Y in terms of the ITT?

Five assumptions give us just such an identification result:

1. SUTVA

2. Relevance of the instrument: 0 < P(Z = 1) < 1 and
P(D1 = 1) ̸= P(D0 = 1)

3. Ignorability or exogeneity of the instrument: {Yzd ,Dz}⊥⊥Z

(i) ⇝ {Yzd}⊥⊥Z (sufficient for ITT)

(ii) ⇝ {Dz}⊥⊥Z

4. Exclusion restriction: Y1,d = Y0,d for d = 0, 1.

5. Monotonicity: D1 ≥ D0 (‘no defiers’)
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IV: Relevance, Ignorability, and Exclusion

D Y

Z

U

U

U

X

Condition on {X} to recover IV

relevance

ignorability violation (i)

ign
ora

bil
ity

vio
lat
ion

(ii
)

exclusion violation
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Decomposing τITT
τITT can be decomposed into a combination of subgroup ITTs:

τITT = τ cITT × Pr(compliers) + τ aITT × Pr(always-takers)

+ τnITT × Pr(never-takers) + τdITT × Pr(defiers)

where

τ cITT = E[Y1i ,D1i
− Y0i ,D0i

| D1i = 1,D0i = 0],

τ aITT = E[Y1i ,D1i
− Y0i ,D0i

| D1i = D0i = 1], etc.

Under monotonicity and exclusion restriction, this simplifies as:

τITT = τ cITT × Pr(compliers) + τ aITT × Pr(always-takers)

+τnITT × Pr(never-takers) + 0 [∵ monotonicity]

= τ cITT × Pr(compliers) + 0× Pr(always-takers)

+0× Pr(never-takers) [∵ exclusion restriction]

= τ cITT × Pr(compliers)
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IV: Estimand and Interpretation

Therefore, τ cITT can be nonparametrically identified:

τ cITT =
τITT

Pr(compliers)

=
E(Yi | Zi = 1)− E(Yi | Zi = 0)

E(Di | Zi = 1)− E(Di | Zi = 0)

=
Cov(Yi ,Zi )

Cov(Di ,Zi )

τ cITT is the Local Average Treatment Effect (LATE) for compliers:

τ cITT = τ cLATE = E[Y1i − Y0i | D1i = 1,D0i = 0]

LATE has a clear causal meaning, but interpretation is often tricky:

We can never identify who exactly the compliers actually are

Different encouragements (instruments) may yield different compliers
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IV: Plug-in Estimator

Recall the LATE identification result:

τLATE =
E(Yi | Zi = 1)− E(Yi | Zi = 0)

E(Di | Zi = 1)− E(Di | Zi = 0)
=

Cov(Yi ,Zi )

Cov(Di ,Zi )

A plug-in estimator is called the Wald estimator:

τ̂LATE =
1
n1

∑n
i=1 ZiYi − 1

n0

∑n
i=1(1− Zi )Yi

1
n1

∑n
i=1 ZiDi − 1

n0

∑n
i=1(1− Zi )Di

=
Ĉov(Yi ,Zi )

Ĉov(Di ,Zi )

where n1 = # assigned to treatment and n0 = n − n1

The Wald estimator is consistent, but not unbiased in finite samples

The small sample bias may be considerable when the instrument is weak
(i.e. when Ĉov(Di ,Zi ) ≃ 0, more later)
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IV: Two Stage Least Squares Estimator

τ̂LATE can also be estimated via two-stage least squares (2SLS), the
traditional regression-based instrumental variables estimator in
econometrics. Note that the same small sample bias concerns apply!

Consider two regression functions that generate our potential outcomes:

1. Dz = µ+ ρZ + η (first stage)

2. Yzd = γ + αD + ε (second stage)

2SLS estimator runs OLS twice:

Stage 1: Regress D on Z and obtain fitted values (D̂’s)

Stage 2: Regress Y on D̂

Note: As always, we assert homogeneous treatment effects! Becomes an
issue when controlling for X .

Can be implemented in R with using lm (but your SEs will need to be
corrected) or with AER::ivreg.
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Example: ‘First Stage’ in Ananat (2011)
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Example: ‘Second Stage’ in Ananat (2011)
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Better LATE than Nothing?

Short of further assumptions, τLATE is not generally equal to τATE or τATT .

Consider, however, one-sided non-compliance:

D0i = 0 (where Zi = 0)

D1i ∈ {0, 1} (where Zi = 1)

In this setting, τLATE = τATT . Why?

We now have no always takers: D0i = 0∀i
Recall that τ cLATE = E[Y1i − Y0i | D1i = 1,D0i = 0]

Now, E[Y1i − Y0i | D1i = 1,D0i = 0] = E[Y1i − Y0i | D1i = 1]

And E[Y1i − Y0i | D1i = 1] = E[Y1i − Y0i | Zi = 1,Di = 1]

Given Zi = 0 for all control units and D0i = 0∀i , if Di = 1 then Zi = 1

So: E[Y1i − Y0i | Zi = 1,Di = 1] = E[Y1i − Y0i | Di = 1] = τATT

Questions of external validity still remain, however. (See the Deaton and
Imbens exchange.)
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Characterising Compliers

We can’t observe compliers, but may be able to characterize compliers in
terms of some covariates X

Marbach & Hangartner (2020) offer simple and intuitive method:

1. Observe f (X ) (e.g. mean) for always-takers (treated in the encouragement
group)

2. Observe f (X ) for never-takers (control in the non-encouraged group)

3. Subtract off the weighted f (X ) and you are left with the f (X ) for compliers.

Aronow & Carnegie (2013) suggest we can go even further:

1. Estimate PCi = Pr(D1i > D0i , the compliance score

2. Use inverse compliance score weighting to move from LATE to ATE

(But only if our estimation of PCi works well!)

MY457 Special Week Winter Term 2024 30 / 35



Ignorability Violations

Researchers often under-appreciate that the causal interpretation of IV
hinges on the ignorability of Z .

When is that more plausible than the ignorability of D? Do we risk
returning to SOO world?

Consider, e.g. the canonical paper by Acemoglu et al (2001) which has
18, 000 citations:

Study effect of institutions on economic outcomes

Use settler mortality rates to instrument for institutional types

But surely disease environment is not ignorable?

Is this actually any better than a näıve SOO analysis?

Falsification tests can help:

Balance tests (a la selection on observables)

Placebo tests (all types)
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Exclusion Violations

More attention is typically been paid to exclusion violations.

Violations of the exclusion restriction are typically unobservable – it is akin
to speculation about mechanisms in a causal graph

Again, falsification tests can help:

Placebo outcome tests on alternative Y ′

Placebo population tests

One common problem is that people often want to use the same
instrument multiple times...
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Example: Rainfall as an Instrument (Mellon, 2024)
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Exclusion Violations: Bayesian Approach

Intuitively, you may note that the size of the exclusion restriction problem
is roughly proportional to the ratio of the LATE and the exclusion
violation.

That is, if the LATE is large and the exclusion violation very small, we can
perhaps ignore the problem.

There are some Bayesian solutions, e.g. the ‘plausibly exogenous’
framework (Conley et al. 2012):

Place a prior on the exclusion restriction violation

Estimate the IV given that prior
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Weak IV

Weak instruments – those that only weakly affect D – have different
asymptotic properties to non-weak instruments

Question: When is an instrument ‘relevant enough’?

Traditionally, researchers focused on the first stage F -statistic (greater
than 10 was considered good)

Lots of ongoing debate, see Stock & Yogo (2005), Lee et al. (2022),
Angrist & Kolesár (2023)

But at a fundamental level, what exactly are we doing here? If the
instrument has only a very weak influence on treatment, what variation in
D are we really studying in the first place?
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