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Topics of this lecture

1 Getting More Credible

2 Falsification Tests

3 Partial Identification

4 Sensitivity Analyses
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Selection on Observables

Observational settings where the assignment mechanism for D is either unknown
or not under our control.

We are willing to make the (1) conditional independence assumption:

(Y1, Y0) ⊥⊥ D | X

And the (2) common support assumption:

0 < P(Di = 1 | Xi = x) < 1 for any x ∈ X

This allows us to nonparametrically identified the ATE for D on Y
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The Assumption-Credibility Trade-off

Least credible Most credible

Naïve
comparison

Observational causal
inference techniques

Controlled
randomization

Selection on
observables

Diff-in-diff/event
studies/SCM

Instrumental
variables

Regression
discontinuities

Can we apply the general logic to a specific design? Recall that the stronger our
assumptions are, the less credible our inferences.

We will explore approaches to improving our confidence in any given design:
1. Try to falsify our assumptions empirically
2. Weaken our assumptions and see what happens
3. Assess how wrong we would have to be to change our conclusions

Note: These approaches can (should?) also be used to assess other designs.
MY457 Week 5 SOO-3 4 / 31



1 Getting More Credible

2 Falsification Tests

3 Partial Identification

4 Sensitivity Analyses

MY457 Week 5 SOO-3 5 / 31



What is Falsification?
Falsification is a scientific principle (a ‘criterion of demarcation’) that comes from
(at least) Popper (1934/1959):

The point is that, whenever we propose a solution to a problem, we ought to try
as hard as we can to overthrow our solution, rather than defend it.

Contrast this with another term: ‘validation’ (a.k.a verification).
Validation implies a test that provides evidence in favour of our assumptions.
By contrast, falsification implies a test that, if failed weighs against our
assumptions. These sometimes look equivalent but they are not!

“Covariates are balanced our assumptions are met”
vs.

“Covariates are balanced no evidence that our assumptions are not met.”
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Placebo Tests
One important type of falsification test is the placebo test.
Consider the following setup:

1. Treatment D, outcome Y
2. Assumption: (Y0i, Y1i) ⊥⊥ Di (or conditional independence)
3. Estimand is the ATE of D on Y

Suppose we remain concerned about the possible presence of a confounder U
which throws into doubt our assumption. We design tests that, if the confounder
is present, will falsify our assumption.
Eggers et al (2023) propose a typology of placebo tests that can be used to
falsify assumptions about our design:

1. Placebo treatment test: D′ → Y where D′ 6= D
2. Placebo outcome test: D→ Y′ where Y′ 6= Y
3. Placebo population test: D→ Y for population where τATE = 0
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Placebo Tests as Graphical Models: The Problem

Recall that we wish to estimate the effect of D on Y, but we remain concerned
about the presence of a confounder U.
We can present this graphically:

D Y

U

Reminder: U simultaneously sets D and Y, opening a back-door path that renders
the effect of D on Y is not identified. How might we seek to falsify the claim that
U is not a concern?
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Placebo Tests as Graphical Models: Placebo Outcome Test

Test for an ‘effect’ of D on Y′, under two assumptions:
1. The true effect of D on Y′ is≈ 0.
2. The confounder of interest affects Y′.

Graphically:

D Y

Y′U

Insight: If U is present, then we should find a relationship between D and Y′ (if our
model is correct). Evidence of no relationship fails to falsify our design.
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Placebo Tests as Graphical Models: Placebo Treatment Test

Test for an ‘effect’ of D′ on Y, under two key assumptions:
1. The true effect of D′ on Y is≈ 0.
2. The confounder of interest affects D′.

Graphically:

D Y

D′U

Insight: If U is present, then we should find a relationship between D′ and Y (if our
model is correct). Evidence of no relationship fails to falsify our design.
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Placebo Tests as Graphical Models: Placebo Population Test

Test for an ‘effect’ of D on Y in a new population, under two key assumptions:
1. The true effect of D on Y is≈ 0.
2. The confounder of interest still affects D and Y.

Graphically:

D Y

U

Insight: If U is present, then we should still find a relationship between D and Y (if
our model is correct). Evidence of no relationship fails to falsify our design.
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Are Falsification Tests Helpful?
The value of such tests (or ‘robustness tests’ in the specific case) is debated
(Gelman, 2018, “Robustness checks are a joke”):

But they can be redeemed by good scientific practice:
Design tests that are meaningful and fair.
Falsify first, not last.
Do not null-hack or store failed tests in the file-drawer! (I will know!)
Try pre-registering observational designs and falsification tests if feasible.
Pay attention to point estimation and statistical significance (more when we do
diff-in-diffs)
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“Woah woah woah! There’s still plenty of meat on that bone. Now you take this home, throw it into Markdown,
add some conditional ignorability, then loosen up those assumptions a little. Baby, you’ve got a paper going.”

Carl Weathers (1948 - 2024, Rest In Peace)
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Partial Identification Setup

Consider again a simple research setting:
Binary treatment: Di ∈ {0, 1}
Potential outcomes: Ydi

Estimand is the ATE:
τATE = E[Y1i − Y0i]

Previously we asked: What assumptions must I make to point identify the ATE
from observed data?

Now we ask: How much can we learn about the ATE from observed data, without
any assumption? This goal is what is called partial identification.
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Decomposing the ATE

Let’s begin by decomposing the ATE into its constituent parts:

τATE = E[Y1i − Y0i]

= E[Y1i | Di = 1]P(Di = 1) + E[Y1i | Di = 0]P(Di = 0)
−E[Y0i | Di = 1]P(Di = 1)− E[Y0i | Di = 0]P(Di = 0)

=
(
E[Yi | Di = 1]− E[Y0i | Di = 1]

)
P(Di = 1)

+
(
E[Y1i | Di = 0]− E[Yi | Di = 0]

)
P(Di = 0)

Quantities in green are observed in our data, quantities in red are unobserved.
Previously we have made assumptions to fill in the unobserved quantities.
But we don’t have to make those assumptions! We can make whatever
(defensible!) assumptions we want...
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Constructing Nonparametric Bounds
Di Y0i Y1i

P(Di = 0) 0 E[Y0i|Di = 0] ?
P(Di = 1) 1 ? E[Y1i|Di = 1]

An extreme option is to assume the ‘best’ and ‘worst’ possible outcomes.
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Constructing Nonparametric Bounds
Di Y0i Y1i

P(Di = 0) 0 E[Y0i|Di = 0] Y
P(Di = 1) 1 Y E[Y1i|Di = 1]

An extreme option is to assume the ‘best’ and ‘worst’ possible outcomes.
Consider the following assumptions:

1. If left untreated, treated units would have had ‘best’ (highest) possible outcome (Y)
2. If treated, control units would have had ‘worst’ (lowest) possible outcome (Y)

Substituting into our decomposition, this gives the sharp lower bound on τ :

τ =
(
E[Yi|Di = 1]− Y

)
P(Di = 1) + (Y − E[Yi|Di = 0]) P(Di = 0)
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Constructing Nonparametric Bounds
Di Y0i Y1i

P(Di = 0) 0 E[Y0i|Di = 0] Y
P(Di = 1) 1 Y E[Y1i|Di = 1]

An extreme option is to assume the ‘best’ and ‘worst’ possible outcomes.
Conversely:

1. If left untreated, treated units would have had ‘worst’ (lowest) possible outcome (Y)
2. If treated, control units would have had ‘best’ (highest) possible outcome (Y)

This gives the sharp upper bound on τ :

τ = (E[Yi|Di = 1]− Y) P(Di = 1) +
(
Y − E[Yi|Di = 0]

)
P(Di = 0)

Note: These ‘extreme case’ sharp upper and lower bounds are assumption free
given the observed data. The most precise bounds we can derive only by looking
at the data are [τ , τ ].

MY457 Week 5 SOO-3 20 / 31



Adding Assumptions
Our ‘extreme case’ bounds are often not very useful. Let’s add an assumption and
see how the bounds change.
The monotone treatment selection (MTS) assumption (Manski & Pepper, 2000):

E[Y0i | Di = 0] ≤ E[Y0i | Di = 1]

E[Y1i | Di = 0] ≤ E[Y1i | Di = 1]

Read: The expected values of the potential outcomes for units who are in
treatment are always higher than for those in the control.
This implies a tighter sharp upper bound on τ :

τ ≤ (E[Yi|Di = 1]− E[Y0i | Di = 0]) P(Di = 1)
+ (E[Y1i | Di = 1]− E[Yi|Di = 0]) P(Di = 0)

∴ τ = E[Yi | Di = 1]− E[Yi | Di = 0]
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Example: Sentencing and Recidivism
A classic example considers how the type of sentence for juvenile offenders
affect recidivism (Manski, 2007):

Di = 1 if sentence involves confinement in residential facilities; 0 if not
Ydi = 1 if commits a crime again given sentence type d; 0 if not

Observed strata:
Y

D 0 1
0 .36 .53
1 .03 .08

Point estimate (random assignment): .08/(.03+ .08)− .53/(.36+ .53) = .13

Nonparametric sharp bounds:
Assumption free: [−.53− .03, .36+ .08] = [−.56, .44]
MTS: [−.56, .13]
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Doing More With Bounds
MTS is one possible assumption that can be used to tighten our bounds. There
are many more you could make. This can, however, be analytically challenging.

Duarte et al (2023) develop an algorithmic approach to deriving sharp bounds for
discrete settings (packaged as autobounds in Python.)

‘Thinking with bounds’ can prove very useful:
Fryer (2019) studies racial bias in US police violence with four datasets on
police-denizen interactions.
Key analyses are regressions of lethal and non-lethal police violence on the race of
the denizen, controlling for numerous observable covariates. Key finding: some
racial bias in non-lethal violence, but none in lethal violence.
Knox et al (2020) study a key challenge in the paper: who is stopped is not random.
If police exercise bias in who they stop, the above analysis is flawed. (Why?)
They derive bounds on discrimination in Fryer’s (2019) data based on varying
assumptions about police bias in who they stop.
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Fragility of Discrimination Findings to Selection

(source: Knox et al (2020))
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“’Cause I know that it’s delicate”
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Confounding as Omitted Variable Bias
Consider a setting with a binary D, covariates X, and candidate unobserved confounder
U. We believe the following about the data generating process:

Yi = τDi + Xβ + δUi + εi

As U is unobserved, we estimate instead:

Yi = τ̂Di + Xβ̂ + η̂i

What does τ̂ give us? (Cinelli & Hazlett, 2020)

τ̂ =
cov(D⊥⊥X, Y⊥⊥X)

var(D⊥⊥X)

=
cov(D⊥⊥X, τD⊥⊥X + γU⊥⊥X)

var(D⊥⊥X)

=τ + δ
cov(D⊥⊥X, U⊥⊥X)

var(D⊥⊥X)

=τ + δγ

where V⊥⊥X is residual V after removing components linearly explained by X
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Decomposing Confounding

Consider again our derived equality:

τ̂ = τ + δγ

Omitted variable bias is δγ. This is the interaction of two parameters:
1. δ: The marginal change in Y for different levels of U (may or may not be causal)
2. γ: The imbalance in U between treated and control (may or may not be causal)

Insights:
Bias is multiplicative in δ and γ.
As our classical confounding DAG tells us, if either δ = 0 or γ = 0, then there is no
confounding issue.
While we cannot observe τ , δ, or γ, we can observe τ̂ . We can thus explore what
combinations of the three unobserved parameters could account for our estimate.
This is the goal of sensitivity analysis.
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Traditional Approach: Imbens (2003)

Imbens (2003) uses a slightly different setup, but gets us to a similar place,
where δ and γ can be understood as:

R2
Y,par(δ): residual variation in Y explained by unobserved confounder U

R2
D,par(γ): residual variation in D explained by unobserved confounder U

Practically, as both values are bounded by [0, 1], we can try any number of
combinations of hypothetical values, and see how our estimate of τ changes.
These values are hypothetical, but a common strategy is to benchmark them
against the explanatory power of observed covariates. This can be very powerful
in settings where canonically important covariates are observed.
Visualisation typically through ‘contour plots’ – see sensemakr in R
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Contour Plot for Single Hypothetical Confounder

(source: Cinelli & Hazlett, 2020)
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Cinelli & Hazlett’s (2020) Partial R2 Parameterization

(source: Cinelli & Hazlett, 2020)
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