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Where Were We?

Observational settings where the assignment mechanism for D is either unknown
or not under our control.

Problem: If Y1, Y0, and D are associated with observed pre-treatment X (a
‘selection problem’), we cannot naïvely compare the group means of Y.

Solution: We make the (1) conditional independence assumption:

(Y1, Y0) ⊥⊥ D | X

And (2) common support assumption:

0 < Pr(Di = 1 | Xi = x) < 1 for any x ∈ X

But even then, we still cannot naïvely compare the means of Y in different groups!
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Where Were We?
Given our assumptions, the ATE is instead nonparametrically identified as the
weighted difference in population regression functions:

τATE = E[τ̂CATE(Xi)]

=

∫
(E[Yi | Di = 1, Xi = x]− E[Yi | Di = 0, Xi = x])f(x)dx

The intuition easier to grasp if we consider a case in which all Xi is discrete...

Then we can rewrite the identification result (for both ATE and ATT) as:

τATE =
∑
x∈X

(E[Yi | Di = 1, Xi = x]− E[Yi | Di = 0, Xi = x]) Pr(Xi = x)

τATT =
∑
x∈X

(E[Yi | Di = 1, Xi = x]− E[Yi | Di = 0, Xi = x]) Pr(Xi = x | Di = 1)

We calculate conditional ATEs (CATEs) for different levels of X, and re-weight
them by the (conditional) prevalence of X in the data.
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From Identification to Estimation

This gives us the identification result for selection on observables. But how
should we estimate our estimands of interest?

There are four broad approaches for estimation under conditioning:
1. Subclassification
2. Matching
3. Weighting
4. Regression

Subclassification only works with discrete X variables, and is a sample analogue
of the result we saw on the previous slide (consult last week’s slides).

More general, and more frequently encountered solutions are matching,
weighting, and regression. We turn to those now.
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Matching
Matching seeks to impute missing potential outcomes using the observed
outcomes of ‘closest’ units or nearest neighbors. Basic process:

1. For each observation in the treated group i, find an observation in the untreated
group with the most similar values of X

2a. Estimate ATT with the average difference between the pairs:

τ̂ATT =
1
n1

∑
i:Di=1

(Yi − Ỹi) '
1
n1

∑
i:Di=1

(Y1i − Y0i) = τATT

where Ỹi is the observed outcome of i’s untreated ‘buddy’
2b. When there are multiple (Mi) ‘close’ units, their average can be used:

τ̂ATT =
1
n1

∑
i:Di=1

(Yi −
(

1
Mi

∑Mi

m=1
Ỹim

)
)

where Ỹim is i’s mth untreated buddy
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Example with Single Pre-treatment Covariate
Potential Outcome Potential Outcome

unit under Treatment under Control
i Yi(1) Yi(0) Di Xi
1 6 ? 1 3
2 1 ? 1 1
3 0 ? 1 4
4 0 0 2
5 9 0 3
6 1 0 -2
7 1 0 -4

Match and plug in:

τ̂ATT =
1
3((6− 9) + (1− 0) + (0− 9)) = −3.7
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A Silver Bullet?

Matching looks like it is magic, but it’s not.

Matching is an approach to estimation (just like regression).

Always remember: “Design precedes estimation."
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The Curse of Dimensionality
Consider a case where Xi contains> 1 variable? Can we hope to exactly match
on every Xi, even if we have very large n? No!
We are struck by what is called the curse of dimensionality...

As number of dimensions in the covariate space increases, data sparsity
exponentially increases for a given sample size.
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“You must prepare to settle for a 60-70% match”
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The Curse of Dimensionality and Bias

The curse of dimensionality implies a bias problem wherever we allow for
non-exact matches.

Why? By tolerating not-quite-exact matches, we must (in expectation) inject
‘error’ into our estimates of missing potential outcomes (Abadie & Imbens, 2006).

The bias term is order N(−1/k), increasing in the number of dimensions k and
implying no

√
n-consistency for k > 2.

If N0 is much larger than N1 (and there is common support), bias will typically be
small. Generally wise to use Abadie & Imbens (2011) bias correction (more later).
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Matching as Dimension Reduction
How do we find the ‘closest’ match in multi-dimensional space?
We typically use a low-dimensional representation or distance metric. One
example is Mahalanobis distance:

DM(Xi, Xj) =
√

(Xi − Xj)>Σ−1
X (Xi − Xj)

where ΣX is the (sample) variance-covariance matrix of Xi

Note: other variants and metrics are possible.
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The Propensity Score and the Balancing Property

Definition (propensity score)
Probability of receiving the treatment given Xi

π(Xi) ≡ Pr(Di = 1 | Xi)

Assumptions: Suppose the following holds:

1. (Y0i, Y1i) ⊥⊥ Di | Xi (conditional ignorability)
2. 0 < Pr(Di = 1 | Xi = x) < 1 for any x (common support)

Result: The propensity score has the balancing property (Rosenbaum & Rubin,
1983):

Di ⊥⊥ Xi | π(Xi)

Read: Among those units with the same propensity score, Xi is independent of
treatment assignment.
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Identification with the Propensity Score

The balancing property implies that conditional ignorability holds, conditional on
just the propensity score alone:

(Y1i, Y0i) ⊥⊥ Di | π(Xi)

Implication: It is sufficient to condition on π(Xi), instead of Xi

But there is a catch: π(Xi) itself needs to be estimated!
Two-step procedure to estimate causal estimands:
(1) Estimate π(Xi) with a model for a binary response (e.g. logit, probit)
(2) Do nearest neighbor matching on π(Xi)

Note: Need to allow some uncertainty from (1) to percolate through to (2) (this is an
open area of study)
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Estimating the Propensity Score
Estimation of propensity scores requires a correct specification of π(Xi)
(functional form, etc.).
Check balance:

Ideally, want to compare the joint distribution of all Xi between the treated and
untreated in the matched sample
In practice, check various low-dimensional summaries of F(x) (mean difference,
variance ratio, etc.)
Balance tests are often used (e.g. t-test, F-test, KS test) like the ones we saw for
randomized experiments.
Note that balance tests can be misleading in a matching context because “balance”
often improves when you drop lots of observations – can think of this as a
“balance-sample size frontier” (King et al., 2017)

Estimate→ Check Balance→ Re-estimate→ Check Balance→ · · · (ad
infinitum until you attain good balance)
Is this data snooping or p-hacking? No, as long as inference remains blind to Y
and τ
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Things to Consider as you Match
There is a plethora of choices to be made:

One-to-one vs. Many-to-one matching
Exact matching vs. non-exact matching
Matching with or without replacement
Calipar matching
Propensity score matching
Genetic matching
Optimal matching
Coarsened exact matching
...and more in the pipeline...

This creates many researcher degrees of freedom. Whatever you choose, do so
for principled reasons (e.g. balance) and without ‘snooping’ (looking at τ̂ ).
Balance testing when matching is important, but can be misleading. If you only
check things you matched on you will often see good balance. But what are you
missing?
Consider the balance-sample size frontier: one way to achieve good balance is to
heavily trim your sample. Is this a good idea? (e.g. King, Lucas, & Nielsen 2017)
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Weighting on the Propensity Score
So far we have used the propensity score for matching.
An alternative approach is weighting
Result: Under the conditional ignorability and common support assumptions, we
can identify the ATE and ATT (weakly assuming) as:

τATE = E
[
Yi ·

Di − π(Xi)

π(Xi) · (1− π(Xi))

]
τATT =

1
Pr(D = 1) · E

[
Yi ·

Di − π(Xi)

1− π(Xi)

]
These can be estimated using sample analogues called inverse probability
weighting (IPW) estimators:

τ̂ATE =
1
N

N∑
i=1

(Yi ·
Di − π̂(Xi)

π̂(Xi) · (1− π̂(Xi))
) =

1
N

N∑
i=1

(
DiYi

π̂(Xi)
− (1− Di)Yi

1− π̂(Xi)
)

τ̂ATT =
1
N1

N∑
i=1

(Yi ·
Di − π̂(Xi)

1− π̂(Xi)
) =

1
N1

N∑
i=1

(DiYi − (1− Di)Yi
π̂(Xi)

1− π̂(Xi)
)
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Performance of the IPW estimators
IPW estimators have poor small sample properties:

They highly sensitive to extreme values of π(Xi)

Tends to occur when there is a lack of overlap
This generates high variance (inefficiency)
Can also produce significant bias in certain settings (e.g. model misspecification)

A workaround is trim units with extreme weights. But this changes the estimand
to a quantity that is still causal yet difficult to interpret.
Alternative weighting methods with preferable finite sample properties include:

Augmented IPW estimators: e.g. doubly robust estimator (more later).
Entropy balancing (Hainmueller 2012, ebal): choose weights that directly optimize
balance in Xi.
Covariate balancing propensity scores (Imai and Ratkovic 2014, CBPS): model
π(Xi) while optimizing balance in Xi.
Kernel balancing (Hazlett, 2020, kbal): choose weights to balance an unspecified
non-linear representation of Xi.
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Model-based Estimation of Causal Effects
When we think of ‘controlling for’ variables, we usually think of regression. What
role can it play in causal inference?
Recall that under conditional ignorability and common support, ATE/ATT equal
weighted averages of the differences in population regression functions:

τ̂(x) = E[Yi | Di = 1, Xi = x]− E[Yi | Di = 0, Xi = x]

where
τATE = E[τ̂(x)] and τATT = E[τ̂(x) | Di = 1]

This suggests a model-based approach for estimating causal effects, where we
use a regression model for E[Yi | Di, Xi], e.g.,

E[Yi | Di, Xi] = β0 + β1Di + Xiγ,

which is a linear regression, and we can estimate β1 via OLS.

MY457 Week 4 SOO-2 22 / 33



OLS as an Estimator of Causal Effects
Suppose we regressed Yi on Di and Xi, estimating the coefficient on Di via OLS:

β̂OLS =
Cov(Yi, D̃i)

Var(D̃i)
,

where D̃i is the residual from the regression of Di on Xi (“partialling out”).
When is β̂OLS a good estimator of τATE?
The answer depends on whether these two assumptions hold:
(1) Constant treatment effect: τ = Y1i − Y0i for all i.
(2) Linearity: Potential outcomes can be written as

Yi(d) = β0 + dβ1 + Xiγ + εi for d = 0, 1.

Noting that (2) implies (1) (such that β1 = τ ), there are 3 possible scenarios:
1 Both (1) and (2) are true.
2 Only (1) is true.
3 Neither (1) nor (2) is true.
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Case 1: Constant Effect & Linear Potential Outcomes
Result: If treatment effect is constant across units and potential outcomes are
linear in Xi, then the OLS estimate of β1 in the following regression model

Yi = β0 + β1Di + Xiγ + εi

is an unbiased and consistent estimator of τATE.
Proof: First, note that β1 = τi for every i under these assumptions:

τi = Y1i − Y0i

= (β0 + β1 + Xiγ + εi)− (β0 + Xiγ + εi)

= β1

Next, note that conditional ignorability implies the conditional independence
between Di and εi:

(Y1i, Y0i) ⊥⊥ Di | Xi =⇒ εi ⊥⊥ Di | Xi

Because this implies the zero conditional mean assumption, β̂OLS is an unbiased
and consistent estimator of β1, which is equal to τATE (and τi).
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Case 2: Constant Effect & Unknown Functional Form
What happens if Yi(d) is an unknown, nonlinear function of d and Xi, and yet we
used β̂OLS as an estimator of τ̂ATE anyway?
Recall that OLS is the best linear predictor in terms of MSE:

β̂OLS = argmin
β̂1

E[(Yi − β̂0 − β̂1Di − Xiγ̂)2]

This, it turns out, also implies that β̂OLS provides the best linear approximation to
the population regression function:

β̂OLS = argmin
β̂1

E[(E[Yi | Di, Xi]− β̂0 − β̂1Di − Xiγ̂)2]

Result:
β̂OLS can be interpreted as the best linear approximation to the true treatment
effect, whatever the true functional form is.
This approximation may or may not be good in absolute terms.
More flexible models (nonlinear, semi-/non-parametric, etc.) may provide a better
performing approximation.
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Case 3: Heterogeneous Treatment Effects
Consider again our default OLS specification:

Yi = β0 + β1Di + Xiγ + εi

This can be thought of as a parametric model of the underlying data generating
process that produces Yi (and by implication, Y1i and Y0i).
By modeling the relationship between Di and Yi as a multiplicative function of just
β1, we assert that the effect of Di is fixed and homogeneous.
Treatment effect heterogeneity is any real deviation from that assumed model,
for example:

1 SUTVA violations generate variation in treatment effects
2 Effects vary across individual by chance
3 Effects vary over time (e.g. early vs. late)
4 Effects vary systematically by covariates (observed or unobserved)
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Case 3: Heterogeneous Treatment Effects
Now recall the subclassification estimator for the ATE:

τ̂ATE =
∑
x∈X

(E[Yi | Di = 1, Xi = x]− E[Yi | Di = 0, Xi = x]) Pr(Xi = x),

where we weighted subgroup effects by the marginal of Xi.

Similarly, the subclassification estimator for the ATT:

τ̂ATT =
∑
x∈X

(E[Yi | Di = 1, Xi = x]− E[Yi | Di = 0, Xi = x]) Pr(Xi = x | Di = 1),

where we weighted subgroup effects by the conditional of Xi given Di = 1.

Result: The OLS estimator can be written as a subclassification estimator,
weighted by the conditional variances of Di in each subgroup (Angrist, 1998):

β̂OLS =
∑
x∈X

(E[Yi | Di = 1, Xi = x]− E[Yi | Di = 0, Xi = x]) Var(Di | Xi = x) Pr(Xi = x)∑
x′ Var(Di | Xi = x′) Pr(Xi = x′)
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OLS as a Subclassification Estimator
Estimator Weights for Subgroups Unbiased for
τ̂ATE Pr(Xi = x) τATE

τ̂ATT Pr(Xi = x | Di = 1) τATT

β̂OLS
Var(Di | Xi = x) Pr(Xi = x)∑
x′ Var(Di | Xi = x′) Pr(Xi = x′)

“τCVW-ATE”

With non-constant treatment effects, OLS provides an unbiased estimator for a
conditional-variance-weighted average treatment effect.
This is a causal quantity, but hard to interpret. It is not generally equal to the ATT
or ATE (more in a moment).
Recall Var(Di | Xi = x) = π(x)(1− π(x)). Therefore:

Weights are high for groups with propensity scores close to 0.5.
Weights are low for groups with propensity scores close to 0 or 1.
OLS minimizes estimation uncertainty by downweighting groups where
group-specific ATEs are less precisely estimated.

This result assumes discrete Xs, but intuition holds for continuous Xs.
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OLS as a Weighted Average of Estimands
Given heterogeneous treatment effects (and some linearity assumptions), the
causal estimand targeted by OLS can be decomposed as:

τOLS = w1 · τATT + w0 · τATU
where:

w1 = (1−P(D=1))·Var[π(X)|D=0]
P(D=1)·Var[π(X)|D=1]+(1−P(D=1))·Var[π(X)|D=0] , and

w0 = 1− w1

With heterogeneous treatment effects, OLS can be an unbiased estimator for a
weighted average of the ATT and ATU (Słoczyński, 2022).
This can admit a strange interpretation:

Weights wj are inversely proportional to the share of units in j.
This is weird: if you have a lot of treated units, ATU will be upweighted, and ATT
downweighted. Why?
For the ATT, OLS is predicting the missing potential outcomes for the treated –
those come from the coefficients for the control, so these are upweighted.

Solutions: weighting, matching, and fully interacting de-meaned X and D.
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The Fully-Interacted Estimator
One well regarded large-sample linear regression estimator is as follows:

Yi = α̂ + Diτ̂int + (Xi − X̄)β̂ + Di(Xi − X̄)γ̂

where:
Xi are covariates sufficient to satisfy the conditional independence
assumption
X̄ is the sample mean of Xi

This estimator has numerous desirable properties:
The bias in τ̂int as an estimator for τATE is arbitrarily small in large samples under
only conditional independence.
Huber-White robust standard errors are sufficient for hypothesis testing.
Mitigates small sample biases and inefficiency (Freedman, 2008).
Resolves the weighted average of estimands problem (Słoczyński, 2022).
Robust to contamination bias (Goldsmith-Pinkham et al, 2022)
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Matching or Regression?
Regression:

+ Regression is simple.
- In SOO world, simple regression relies on a number of strong assumptions
to admit a readily interpretable estimate. More complex specifications can
help.

- Regression is prone to extrapolation beyond common support.

Matching:
+ Non-parametric (no model dependence)
+ Can be a transparent way to move from data/design to an estimate
- Can be rather non-transparent if implemented in certain ways
- Recall that because we can very rarely ever exactly match, matching usually
induces bias by pulling our estimate slightly away from the estimand. This
becomes more severe:

the more matches for each treated unit (as in, M=2 or 3 or 10); and
the more covariates we match on
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Combining Regression, Matching and Weighting
Some approaches combine regression with matching or weighting for better
finite-sample performance and/or robustness properties.

Bias-corrected matching (Abadie and Imbens 2005):
Estimate bias inherent to matching estimators via regression
Subtract it off from the matching estimate for correction

→ In R, can e.g. use BiasAdjust = TRUE in the Matching package.

Doubly-robust estimation (Robins and Rotnitzky 2001):
Use a weighted average of regression and IPW estimators
The estimator will be consistent as long as either the regression model or PS model is
correct

→ In R, see e.g. tmle or drgee packages.

Matching as nonparametric data preprocessing (Ho, Imai, King, & Stuart 2007):
Model-based estimation of causal effect is most likely to go wrong when it involves
extrapolation due to poor overlap in covariates
Use matching to make treatment and control groups similar
Then run regression models to estimate causal effects

→ In R, use whatever matching tool then whatever parametric tool!
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