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(Randomized) Experiments

Definition (Randomized Experiment)
An experiment is a research design where the assignment mechanism is
individualistic, probabilistic, uncounfounded, and controlled by the researcher.

In a (classical) randomized experiment (‘randomized controlled trial’ or RCT)
treatment values are assigned to N units at random, with known and positive
assignment probabilities for each treatment to each unit.
We consider the ‘completely randomized experiment’: a random subset of N1
units assigned to treatment (D = 1) and remaining N0 = N− N1 to control.

Note the slight difference to simple randomization (Bernoulli trials).
Extension to cases with more than two treatment levels is reasonably
straightforward.
Other randomized designs are introduced briefly at the end of this lecture.
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“It’s an illusion, Michael”
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The Problem

Recall our basic problem:

E[Y|D = 1]− E[Y|D = 0] = E[Y1|D = 1]− E[Y0|D = 0]

= E[Y1|D = 1]− E[Y0|D = 1]︸ ︷︷ ︸
ATT

+ {E[Y0|D = 1]− E[Y0|D = 0]}︸ ︷︷ ︸
Selection bias
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Randomization
Our goal is to find conditions under which we can identify our unobservable
causal estimand with only observational data.
Randomization implies that assignment probabilities do not depend on potential
outcomes (in expectation):

P(D|Y0, Y1) = P(D)

Or, said another way:
(Y1, Y0) ⊥⊥ D

(Note: ⊥⊥means “is independent of”.)

To check understanding, does randomization imply Y ⊥⊥ D? No!
(Y1, Y0) ⊥⊥ D means that (in expectation) Y0 is the same for those with D = 1
and for those with D = 0 (and similarly for Y1), says nothing about equivalence of
Y between these groups.
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Randomization Eliminates Selection Bias
Back to the problem at hand:

E[Y|D = 1]− E[Y|D = 0] = E[Y1|D = 1]− E[Y0|D = 0]

= E[Y1|D = 1]− E[Y0|D = 1]︸ ︷︷ ︸
ATT

+ {E[Y0|D = 1]− E[Y0|D = 0]}︸ ︷︷ ︸
Selection bias

Under independence from randomized treatment assignment, we have

E[Y0|D = 1] = E[Y0|D = 0] = E[Y0]

thus selection bias equals zero (in expectation).

We also have E[Y1|D = 1] = E[Y1|D = 0] = E[Y1], thus

τATT = E[Y1|D = 1]− E[Y0|D = 1] = E[Y1]− E[Y0] = τATE
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Randomization: Key Identification Result

Independence implied by complete randomization gives us:

E[Y|D = 1]− E[Y|D = 0] = E[Y1]− E[Y0] = τATE

The observed means difference between the treatment group identifies the
causal average treatment effect ATE (as well as ATT and ATU, which both equal
the ATE in this case).

Note: We can also identify most other population-level causal effects, since they
are comparisons of some features of the distributions of Y0 and Y1 and we can
now estimate both of these distributions.
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Graphical Representation

Y D

U

d0

Consider a setting in which D← U→ Y is a back-door path connecting D and Y
through unobserved U.

This is canonical confounding with the unobserved U confounding D→ Y

Randomization is equivalent to imposing do(d0) or do(d1), eliminating U→ D

There are now no back-door paths, so D→ Y is identified.
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Randomization and the Balancing Property
In expectation, complete randomization balances all observed and unobserved
pre-treatment characteristics between treatment and control.
Why? For units with the same probability of treatment, Xi is independent of
treatment assignment the balancing property.
(Note: We will dive deeper into this next week, when we introduce propensity scores.)

In a given experimental sample, we can empirically check for balance in observed
pre-treatment covariate X using so called ‘balance tests’ (e.g., t-tests or
equivalence tests) to see if the distributions p(X|D = 1) and p(X|D = 0) are not
meaningfully different:

In any one sample and treatment regime we might expect some chance imbalance.
You could ‘control’ for imbalanced covariates, but don’t ‘have’ to (more later).
Stratified randomization can guarantee exact balance in some observed X.
Even more aggressive randomization procedures exist (e.g. pair-matching).
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Complications and Limitations in Randomized Experiments
Randomization (and thus internal validity) can be complicated by:

Missing data (e.g. dropout/attrition) – outcome is unobserved for some units in a
way that is associated with D or potential outcomes.
Non-compliance – some units receive a different treatment than the one they were
assigned to.

Randomization does not help with external validity: How well do causal effects
for this sample apply to broader population, or other populations?

Can differentiate Sample ATE (SATE) from Population ATE (PATE) – randomization
identifies SATE, but PATE also requires random sampling.
Moving to a different population entirely would require other (often heroic)
assumptions.

Randomized experiments can be weak in construct validity: How well do
treatment and outcome in the experiment match the concept we are
substantively interested in?
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Estimation vs. Inference

Estimation:
Choosing the right function to apply to our observed data.
We can use the distributions p(Y|D = 1) and p(Y|D = 0) in the observed
data to estimate the distributions of Y1 and Y0 in the population, and thus
population causal effects.
Typically quite simple and familiar methods are sufficient for experiments.

Statistical inference:
Characterizing uncertainty around our estimates.
Hypothesis tests and confidence intervals tend to be based on the “source
of identifying variation” (i.e., what is random?)
See the discussion in Chapters 5–8 of Imbens & Rubin for more on this, if
you are interested.
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Estimating ATE

τATE = E[Y1]− E[Y0]

An obvious estimator of this is the sample difference-in-means:

τ̂ = Ȳ1 − Ȳ0

where
Ȳ1 =

∑
Yi · Di∑
Di

=
1
N1

∑
Di=1

Yi

Ȳ0 =

∑
Yi · (1− Di)∑

(1− Di)
=

1
N0

∑
Di=0

Yi

with N1 =
∑

i Di
and N0 =

∑
i(1− Di) = N− N1

Have already proven that τ̂ is an unbiased estimator of τATE under randomization!
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Estimating ATE: Regression
The same τATE can also be estimated using a linear regression model

Yi = γ̂ + τ̂Di + ε̂i

(Recall: τ̂ from a bivariate regression with a binary independent variable is equivalent to the diff-in-means.)

It is not necessary to include covariates X in this model. Why?
But pre-treatment covariates are sometimes included:

Can increase precision (reduce standard error) by modeling residual variation in Y
Control for observable imbalance (generated by random chance)
Allow for estimation of heterogeneous treatment effects by X (by including
interactions in the model)
There is a risk of inducing small-sample bias (Freedman, 2008) – more in a few
weeks when we introduce the ‘fully-interacted estimator’ (Lin, 2013)
Note: do not include post-treatment covariates. (Montgomery et al., 2018; Cinelli et
al., 2022)
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Two Sample T-Test for Inference

From statistical theory, we know that under H0: τATE = 0,

t =
τ̂√

σ̂2
1

N1
+
σ̂2
0

N0

d→ N(0, 1),

where σ̂2
d =

∑
Di=d(Yi − Ȳd)2/Nd for d ∈ {0, 1}.

We reject the null hypothesis H0: τATE = 0 against the alternative H1: τATE 6= 0 at
the asymptotic 5% significance level if |t| > 1.96.
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Randomization Inference
For the two-sample t-test, the null hypothesis was that the average treatment
effect τATE is zero, i.e.

H0 : E[Y1] = E[Y0], HA : E[Y1] 6= E[Y0]

Consider now instead the sharp null hypothesis (and alternative)

Hs
0 : Y1 = Y0, Hs

A : Y1 6= Y0

i.e. that all individual causal effects are zero.
Assuming Hs

0, then Yi = Y0i = Y1i for every unit. We can thus construct the full
population distributions of Y0i and Y1i, under the null hypothesis!
Why? Under the sharp null the observed data Yi for every unit would have been
exactly the same, no matter the value of Di

This is called randomization inference, permutation test, or Fisher’s exact test

MY457 Week 2 Randomization 20 / 33



Randomization Inference

Procedure for randomization inference with complete randomization:

1. Permute the values of Di (N1 1s and N0 0s) differently across the N units, keeping Yi
unchanged.

2. Calculate and store the value of τ̂j (or any other appropriate statistic, such as the
t-test statistic) for each of these permuted datasets j.

3. Calculate p-value as the proportion of τ̂j that are as or more extreme than the
actually observed τ̂

With small N, we can consider all the permutations of Di
There are

(N
N1

)
= N!/(N1!N0!) of them

With larger N, use a random sample of all the permutations
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Randomization Inference Example
Consider an experiment with 8 units, 4 randomly assigned to treatment.
We can permute all

(8
4
)

= 70 possible assignments.
We can then calculate the sample mean differences that would have been
obtained for each of them if the sharp null hypothesis were true.

Yi 12 4 6 10 6 0 1 1
Di 1 1 1 1 0 0 0 0 τ̂ = 6

τ̂j
j = 1 1 1 1 1 0 0 0 0 6
j = 2 1 1 1 0 1 0 0 0 4
j = 3 1 1 1 0 0 1 0 0 1
j = 4 1 1 1 0 0 0 1 0 1.5

· · ·
j = 70 0 0 0 0 1 1 1 1 -6
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Randomization Inference Example

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8
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12
Diff. in Means

Randomization Distribution of the Difference in Means

Pr(|α̂(ω)| ≥ 6) = 0.0857

p = Pr(|τ̂j| ≥ 6) = 0.0857
MY457 Week 2 Randomization 23 / 33



The Bootstrap

Another common method for uncertainty estimation is bootstrapping
The basic idea: Simulate the sampling distribution of a statistic via resampling
with replacement
Useful when:

Statistic is so complicated that analytically deriving its sampling variance is too
difficult or cumbersome
Data are so skewed that inference based on asymptotic normality is unlikely to
perform well
Statistic is of a form that makes CLT kick in only slowly, so normal approximation
does not work well

Weakness: Computationally costly, sometimes prohibitively so
Not a general solution for small samples (a common misunderstanding!)
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Bootstrap World

Goal: Estimate uncertainty in θ̂ (any statistic or parameter of interest) without
making any assumption about P
Idea: If n is sufficiently large, the sample X should be a good approximation of P
−→ Think of X as an estimated population probability model P,and just like X is a
realization from P, let’s draw a resample X∗ from X
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Nonparametric Bootstrap and Parametric Bootstrap

Nonparametric bootstrap:
1. Draw B resamples of size n from X with replacement
2. For each X∗

b , compute θ̂∗b , where b = 1, ..., B
3a. To estimate s.e. of θ̂, use the sample standard deviation of θ̂∗ = {θ̂∗1 , ..., θ̂∗B}

(bootstrap standard errors)
3b. To compute 95% CI, use 2.5/97.5 percentiles of θ̂∗ = {θ̂∗1 , ..., θ̂∗B} as the

lower/upper bounds (bootstrap percentile CI)
3c. If you know that θ̂ approx.∼ N, , you can use 3a. and compute the bootstrap normal CI

Not only can you do this without any assumption about P, you can use this for
any function of data θ̂ = f(X)

Block bootstrap: When observations are clustered, resample clusters with
replacement instead of individual units

MY457 Week 2 Randomization 26 / 33



1 The experimental ideal

2 The ‘magic’ of randomization

3 Estimation

4 Inference

5 Example experiment: JTPA

6 Beyond simple randomized experiments

MY457 Week 2 Randomization 27 / 33



Google images result for “stock photo of people upskilling in a business setting”
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Example: Job Training Partnership Act (JTPA)

Largest randomized training evaluation ever undertaken in the U.S.; started in
1983 at 649 sites throughout the country
Sample: “Underskilled” and “economically disadvantaged” persons in the labor
market (previously unemployed or low earnings)
D: (Invitation) to one of three general service strategies:

classroom training in occupational skills
on-the-job training and/or job search assistance
other services (eg. probationary employment)

Y: earnings 30 month following assignment
X: Characteristics measured before assignment (age, gender, previous earnings,
race, etc.)
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Means and Standard Deviations for JTPA Experiment
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JTPA Experiment: Estimated effects separately by group
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Some Other Randomization Schemes

The completely randomized design is only one option:

Stratified (conditional, blocked) randomized experiment are randomized
separately within levels of some covariate(s) X

e.g. separately for men and women
An extreme version is a pairwise randomized experiment: Each stratum
(block) contains 2 units, one assigned to treatment, the other to control.
Stratification will be very important from next week, when we move on to
observational assignment mechanisms.

Cluster randomized experiments randomize units in clusters. Every unit
within a cluster gets the same treatment level.

e.g. randomizing whole villages of people or whole classrooms of pupils.

Cross-over experiments have units switch treatment status over time.
e.g. varying treatments for sick patients over time
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