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Difference-in-Differences

Thus far, we have reasoned about cases where D varies between units, and we
assert some belief about the assignment of D.

But sometimes D may vary over two dimensions. This is actually very common,
e.g. variation over time and between units.

Enter difference-in-differences (DiD).

Popular in both academia and industry, DiD is a widely applicable research design
that has received renewed attention in recent years.

Today we will focus on the canonical 2-period difference-in-differences design,
with a brief extension to two pre-treatment periods.

Next week we will extend this design to multiple time periods with (potentially)
staggered treatment roll-out and (potentially) heterogeneous treatment effects.
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Treatment: Change of Lambeth Company’s water source in 1852

Difference 1: Pre-Period - Post-Period

Difference 2: Lambeth - Southwark & Vauxhall

Leveraging both gives us difference-in-differences!

Note: We can compute this across either dimension.
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Groups, Periods, and Treatment

Units: i ∈ {1, ...,N}

Time periods: t ∈ {0 (pre-treatment), 1 (post-treatment)}

Group indicator: Gi =

{
1 (treatment group)
0 (control group)

Units in the treatment group receive treatment in t = 1, so:

Treatment indicator: Zit ∈ {0, 1}

Time Period
Group t = 0 t = 1
Gi = 1

(treatment group)
Zi0 = 0

(untreated)
Zi1 = 1
(treated)

Gi = 0
(control group)

Zi0 = 0
(untreated)

Zi1 = 0
(untreated)
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Outcomes – Potential and Observed
Define potential outcomes Yit(z) as:

Yit(0): potential outcome for unit i in period t when not treated
Yit(1): potential outcome for unit i in period t when treated

Note: Pay attention to the notation change above!

Individual causal effect for unit i at time t is

τit = Yit(1)− Yit(0)

Observed outcomes Yit are realized as

Yit = Yit(0)(1− Zit) + Yit(1)Zit

Because Zi1 = Gi in the post-treatment period (t = 1), we can also write

Yi1 = Yi1(0)(1− Gi) + Yi1(1)Gi
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Identification Challenge
Estimand: ATT in the post-treatment period

τATT = E[Yi1(1)− Yi1(0)|Gi = 1]
= E[Yi1(1)|Gi = 1]− E[Yi1(0)|Gi = 1]

Observed quantities:

Pre-Period (t = 0) Post-Period (t = 1)

Treatment Group (Gi = 1) E[Yi0(0)|Gi = 1] E[Yi1(1)|Gi = 1]

Control Group (Gi = 0) E[Yi0(0)|Gi = 0] E[Yi1(0)|Gi = 0]

Problem: Missing potential outcome E[Yi1(0)|Gi = 1].

What would the average post-period outcome for the treated group have been in the
absence of treatment?
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Possible Comparisons
Estimand: ATT in the post-treatment period

τATT = E[Yi1(1)− Yi1(0)|Gi = 1]
= E[Yi1(1)|Gi = 1]− E[Yi1(0)|Gi = 1]

Observed quantities:

Pre-Period (t = 0) Post-Period (t = 1)

Treatment Group (Gi = 1) E[Yi0(0)|Gi = 1] E[Yi1(1)|Gi = 1]

Control Group (Gi = 0) E[Yi0(0)|Gi = 0] E[Yi1(0)|Gi = 0]

Comparison: Post-Period vs. Pre-Period, for Treated

Use E[Yi1|Gi = 1]− E[Yi0|Gi = 1] to estimate τATT
Assumes E[Yi1(0)|Gi = 1] = E[Yi0(0)|Gi = 1]
(Read: No change in average potential outcome over time)
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Possible Comparisons
Estimand: ATT in the post-treatment period

τATT = E[Yi1(1)− Yi1(0)|Gi = 1]
= E[Yi1(1)|Gi = 1]− E[Yi1(0)|Gi = 1]

Observed quantities:

Pre-Period (t = 0) Post-Period (t = 1)

Treatment Group (Gi = 1) E[Yi0(0)|Gi = 1] E[Yi1(1)|Gi = 1]

Control Group (Gi = 0) E[Yi0(0)|Gi = 0] E[Yi1(0)|Gi = 0]

Comparison: Treated vs. Control, in Post-Period

Use E[Yi1|Gi = 1]− E[Yi1|Gi = 0] to estimate τATT
Assumes E[Yi1(0)|Gi = 1] = E[Yi1(0)|Gi = 0]
(Read: Mean ignorability of treatment assignment)
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Possible Comparisons
Estimand: ATT in the post-treatment period

τATT = E[Yi1(1)− Yi1(0)|Gi = 1]
= E[Yi1(1)|Gi = 1]− E[Yi1(0)|Gi = 1]

Observed quantities:

Pre-Period (t = 0) Post-Period (t = 1)

Treatment Group (Gi = 1) E[Yi0(0)|Gi = 1] E[Yi1(1)|Gi = 1]

Control Group (Gi = 0) E[Yi0(0)|Gi = 0] E[Yi1(0)|Gi = 0]

Comparison: Difference-in-Differences (DD)

Use:
[
E[Yi1|Gi = 1]− E[Yi1|Gi = 0]

]
−
[
E[Yi0|Gi = 1]− E[Yi0|Gi = 0]

]
Assumes: E[Yi1(0)− Yi0(0)|Gi = 1] = E[Yi1(0)− Yi0(0)|Gi = 0]
(Read: Parallel trends)
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Graphical Representation: Difference-in-Differences
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Identification Result for Difference-in-Differences
Under the parallel trends assumption:

E[Yi1(0)− Yi0(0)|Gi = 1] = E[Yi1(0)− Yi0(0)|Gi = 0]

The ATT can be nonparametrically identified as:

τATT =
[
E[Yi1|Gi = 1]− E[Yi1|Gi = 0]

]
−

[
E[Yi0|Gi = 1]− E[Yi0|Gi = 0]

]
Proof: [

E[Yi1|Gi = 1]− E[Yi1|Gi = 0]
]
−

[
E[Yi0|Gi = 1]− E[Yi0|Gi = 0]

]
=

[
E[Yi1(1)|Gi = 1]− E[Yi1(0)|Gi = 0]

]
−

[
E[Yi0(0)|Gi = 1]− E[Yi0(0)|Gi = 0]

]
= E[Yi1(1)|Gi = 1]− E[Yi1(0)|Gi = 1]︸ ︷︷ ︸

= τATT

+E[Yi1(0)|Gi = 1]− E[Yi1(0)|Gi = 0]− E[Yi0(0)|Gi = 1] + E[Yi0(0)|Gi = 0]
= τATT +

[
E[Yi1(0)− Yi0(0)|Gi = 1]− E[Yi1(0)− Yi0(0)|Gi = 0]

]︸ ︷︷ ︸
= 0 under parallel trends

= τATT
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Conditional Parallel Trends

Parallel trends may be more plausible with pre-treatment covariates:

E[Yi1(0)− Yi0(0)|Gi = 1,Xi = x] = E[Yi1(0)− Yi0(0)|Gi = 0,Xi = x]

Read: Within each stratum of X, potential outcomes are parallel.

Under this conditional parallel trends assumption, the ATT is identified as

τATT =
∑
x

τDID,x Pr(Xi = x | Gi = 1)

where: τDID,x =
[
E[Yi1|Gi = 1,Xi = x]− E[Yi1|Gi = 0,Xi = x]

]
−
[
E[Yi0|Gi = 1,Xi = x]− E[Yi0|Gi = 0,Xi = x]

]
Read: Conditional (stratum-specific) ATT, weighted by prevalence of X = x
among the treated (G = 1).
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No Anticipation
We have actually slipped in an extra assumption:

We asserted that E[Yi0|G = 1] is equal to E[Yi0(0)|G = 1].
That is, the observed Y in the pre-period is the realised potential outcome under
control. This is an assumption!
No anticipation: treated units do not react to treatment prior to it occurring.

Define Y∗
i0(0): potential outcome under control in t = 0 for the treated group

(G = 1) if they anticipate treatment.
Our proof then changes:[

E[Yi1|Gi = 1]− E[Yi1|Gi = 0]
]
−

[
E[Yi0|Gi = 1]− E[Yi0|Gi = 0]

]
= τATT +

[
E[Yi1(0)− Yi0(0)|Gi = 1]− E[Yi1(0)− Yi0(0)|Gi = 0]

]︸ ︷︷ ︸
non-parallel trends bias

+
[
E[Yi0(0)− Y∗

i0(0)|Gi = 1]
]︸ ︷︷ ︸

anticipation bias
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Brief Aside: About What Are We Making Assumptions?

In randomized experiments, selection on observables, IV, and local randomization
RDD we knew, measured, and accounted for the assignment mechanism of D.

That is, our assumptions were about the assignment of D in relation to potential
outcomes.

In DiD (and continuity RDD) we are instead making assumptions about potential
outcomes in relation to treatment.

These are subtly different approaches in terms of what is “knowable” (and
testable) as researchers.

While we can “know” (and reason about, test) the assignment mechanism for D,
can we ever “know” potential outcomes?
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Common Weaknesses of Difference-in-Differences

Violations of parallel trends:
Time-varying confounders
Bundled treatments (related to the above)
Spillovers that induce changes in control group

Scale and transformations of Y :
Parallel trends is not invariant to nonlinear transformations of the outcome
E.g. parallel trends in Yit(z) implies non-parallel trends in log(Yit(z)) and
vice versa

Violations of no anticipation:
Treatment or control group strategically change behaviour prior to treatment
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Panel vs. Cross-Sectional Data

Consider two data structures: panel or repeated cross sectional.

For panel data, what does this look like in practice?

A particular realisation might be:

Unit Time Yit Gi Zit Xit

1 0 y1,0 g1 z1,0 x1,0
1 1 y1,1 g1 z1,1 x1,1
2 0 y2,0 g2 z2,0 x2,0
2 1 y2,1 g2 z2,1 x2,1
... ... ... ... ... ...
n 0 yn,0 gn zn,0 xn,0
n 1 yn,1 gn zn,1 xn,1
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Panel vs. Cross-Sectional Data

Consider two data structures: panel or repeated cross sectional.

For panel data, what does this look like in practice?

A particular realisation might be:

Unit Time Yit Gi Zit Xit

1 0 y1,0 1 0 x1,0
1 1 y1,1 1 1 x1,1
2 0 y2,0 0 0 x2,0
2 1 y2,1 0 0 x2,1
... ... ... ... ... ...
n 0 yn,0 1 0 xn,0
n 1 yn,1 1 1 xn,1
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Plug-in Estimation for Panel Data
Estimand:

τATT = E[Yi1(1)− Yi1(0)|Gi = 1]

A plug-in estimator (“difference in difference-in-means”):[
1
N1

N∑
i=1

GiYi1 −
1
N0

N∑
i=1

(1− Gi)Yi1

]
−

[
1
N1

N∑
i=1

GiYi0 −
1
N0

N∑
i=1

(1− Gi)Yi0

]

=
1
N1

N∑
i=1

Gi{Yi1 − Yi0} −
1
N0

N∑
i=1

(1− Gi){Yi1 − Yi0},

where N1 and N0 are the number of treated and control units respectively

Standard errors can be estimated by extending the diff-in-means variance formula using
the same logic (assuming no clustering – more on this later)
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Panel vs. Cross-Sectional Data

Now consider the data structure for repeated cross-sections.

A particular

realisation might be:

Unit Time Yi Gi Zi Xi

1 0 y1 g1 z1,0 x1
2 1 y2 g2 z2,1 x2
3 0 y3 g3 z3,0 x3
4 1 y4 g4 z4,1 x4
... ... ... ... ... ...
n− 1 0 yn−1 gn−1 zn−1 xn−1
n 1 yn gn zn xn
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Panel vs. Cross-Sectional Data

Now consider the data structure for repeated cross-sections.

A particular realisation might be:

Unit Time Yi Gi Zi Xi

1 0 y1 1 0 x1
2 1 y2 1 1 x2
3 0 y3 0 0 x3
4 1 y4 0 0 x4
... ... ... ... ... ...
n− 1 0 yn−1 1 0 xn−1
n 1 yn 1 1 xn
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Plug-in Estimation for Repeated Cross Sections
Repeated cross-sectional data requires a slight change in notation.

Estimand: τATT = E[Yi(1)− Yi(0) | Gi = 1,Ti = 1]

Identified as: τATT =
[
E[Yi | Gi = 1,Ti = 1]− E[Yi | Gi = 0,Ti = 1]

]
−
[
E[Yi | Gi = 1,Ti = 0]− E[Yi | Gi = 0,Ti = 0]

]
The plug-in estimator is then written as:

τ̂ATT =

{∑N
i=1 GiTiYi∑N
i=1 GiTi

−
∑N

i=1(1− Gi)TiYi∑N
i=1(1− Gi)Ti

}

−

{∑N
i=1 Gi(1− Ti)Yi∑N
i=1 Gi(1− Ti)

−
∑N

i=1(1− Gi)(1− Ti)Yi∑N
i=1(1− Gi)(1− Ti)

}

where N now refers to the size of the pooled sample

Note: Covariates Xi can be incorporated via subclassification
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Regression Estimator for Repeated Cross Sections
Because Gi and Ti are both binary, the same estimator can be calculated via regression:

Ŷi = µ̂+ γ̂Gi + δ̂Ti + τ̂GiTi

where µ̂, γ̂, δ̂ and τ̂ are estimated with OLS regression.

Easy to show that τ̂ = τ̂ATT :

After (Ti = 1) Before (Ti = 0) After - Before

Treated Gi = 1 µ̂+ γ̂ + δ̂ + τ̂ µ̂+ γ̂ δ̂ + τ̂

Control Gi = 0 µ̂+ δ̂ µ̂ δ̂

Treated - Control γ̂ + τ̂ γ̂ τ̂

Note: Covariates (Xi) can be added to the right-hand side, with the risk of possible
misspecification bias. Don’t include Xi that can be affected by the treatment!
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Regression Estimator for Panel Data

For panel data, consider an additive linear model for potential outcomes:

Yit(z) = αi + γt+ τz+ εit

where αi is a time-invariant unobserved parameter for unit i.

We know two things:

τ = τATE = τATT (homogeneous treatment effects)

E[εi1 − εi0 | Gi = d] = 0 for d ∈ {0, 1} (parallel trends)

Therefore, the first-differenced regression of ∆Yi = Yi1 − Yi0 on Gi can unbiasedly
estimate τATT = τATE

Notice that panel data allow for unit-level unobserved confounding beyond group-level
unobserved confounding, but it must be additive and time-invariant

Note: Covariate adjustment can be considered, as before.
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A Note on Inference

Treatment assignment may or may not be assigned at the unit level. In some
cases, it is assigned in a clustered fashion:

Geographic assignment (e.g. the water companies in London)
Grouped assignment (e.g. school interventions)

Standard errors should account for the level of assignment – if clustered
assignment, cluster SEs (see Abadie et al., 2023)

If you have a small number of clusters (fewer than ≈ 30), consider a
bootstrapped alternative (see Cameron & Miller, 2015 for guidance)
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Testing Parallel Trends
Can we directly test parallel trends? No! We never observe potential outcomes.

But assuming T > 2 in the pre-period, we can test for parallel pre-trends:
Sometimes done through discrete analyses: Generate placebo treatment indicators
before true treatment occurs, and test for “effect.”
Often done through an event-study model: Fully interact treatment with time period
dummies (generalising the above idea).

(from Freyaldenhoven et al, 2021)
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Pre-Trend Test with Caution

τ̂ = 0.5

Consider a case where τ = 0.5 and
where parallel trends in potential
outcomes holds.

Here, we can safely use the trend in the
control as a “stand-in” for the trend in
the treated.

Our diff-in-diff estimator is an unbiased
estimator of τ .
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Pre-Trend Test with Caution

τ̂ = 0.5

Consider a case where τ = 0.5 and
where parallel trends in potential
outcomes holds.

Looking at differences between units at
each time point, the difference in
potential outcomes between treated
and control is constant.

If we assessed the pre-trend we would
conclude that parallel trends is
plausible.

The pre-trend estimate would be ≈ 0.
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Pre-Trend Test with Caution

τ̂ = 0.55

Now consider a case with τ = 0.5 and
a non-statistically significant linear
violation of parallel trends.

Here, the trend in the control is a less
good “stand-in” for the trend in the
treated.

Our diff-in-diff estimator ends up
“missing” τ (by ≈ linear violation).
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Pre-Trend Test with Caution

τ̂ = 0.55

Now consider a case with τ = 0.5 and
a non-statistically significant linear
violation of parallel trends.

The difference in parallel trends is now
increasing in time.

This increasing deviation in potential
outcomes misleads us in the
post-period.
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Pre-Trend Test with Caution

τ̂ = 0.55

“bias” = 0.05

So, Reviewer 2 suggests, we should
test for pre-trends!

The magnitude of the pre-trend
violation will be ≈= 0.05

But for which difference are you more
likely to reject the null of no difference
from zero?

And if we condition on a non-significant
pre-trend, are we targeting the ATT?
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Pre-Trend Test with Caution

Tests of pre-trend deviations are typically less well-powered than tests for the
main effect⇝ we may (often) incorrectly “pass” a pre-trend test.

Further, by conditioning our analyses on only cases that “pass” the pre-trend test,
we bias our estimator, possibly quite badly (see Roth, 2020).

Point-wise tests for statistical significance alone are insufficient:

Pay attention to substantive significance (how big is any estimated deviation), and
calculate the minimum detectable effect (MDE) for the pre-test.
Correct your pre-trend inferences using uniform confidence bands (Freyaldenhoven
et al, 2021), or tests of joint significance (Liu et al, 2022)

Estimate any pre-trend difference, then assess the sensitivity of your results to
variation in that (linear) trend violation (Rambachan and Roth, 2022)
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Summary

Difference-in-differences can be applied to settings in which:
1. we have data for units in at least two time periods,
2. between which an intervention has occurred where some units are treated and

some not

We need to satisfy the parallel trends and no anticipation assumptions:
Treated units, in the absence of treatment, would trend exactly as the control did
No pre-treatment shifts in outcome as a result of treatment.
Often supported by the treatment being “exogenous” – no anticipation, no selection.

But parallel trends is untestable!
Testing pre-trends can give us indirect evidence, but be careful!
Plausibility will often come down to detailed qualitative case knowledge.
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