Partisan Fertility and Presidential Elections[†]

By GORDON B. DAHL, RUNJING LU, AND WILLIAM MULLINS*

Changes in political leadership drive sharp changes in public policy and partisan beliefs about the future. We exploit the surprise 2016 election of Trump to identify the effects of a shift in political power on one of the most consequential household decisions: whether to have a child. Republican-leaning counties experience a sharp and persistent increase in fertility relative to Democratic counties, a shift amounting to 1.2–2.2 percent of the national fertility rate. In addition, Hispanics see fertility fall relative to non-Hispanics, especially compared to rural or evangelical Whites. (JEL D72, J13)

Shifts in political power in the United States lead to sharp changes in public policy and partisan beliefs about the future. For example, the election of President Obama led to the Affordable Care Act (ACA), and President Trump enacted the Tax Cuts and Jobs Act (TCJA) and tightened immigration policy. These policy changes could affect voters' views of the future in partisan directions along both noneconomic and economic lines.

Democrats and Republicans are deeply divided on their policy priorities and worries about the future, including on topics such as the environment, inequality, moral values, and immigration (Parker, Morin, and Horowitz 2019). Consistent with this, when Trump was elected, Democrats' satisfaction with "the way things are going in the United States" fell from 43 to 13 percent, while Republicans' surged from 12 to 46 percent (Jones 2017).

Voters also become more positive about the direction of the nation's economy when they are politically aligned with the winning president and vice versa. These swings by partisan orientation are large, immediate, and persistent and especially so after the unexpected victory of President Trump in the 2016 election (see online Appendix Figure A1). Similarly, after the 2020 presidential election, Democratic and Republican optimism rapidly exchanged positions. The swings around these two elections are larger than the fall induced by COVID-19.

Do these sharp partisan changes in outlook result in meaningful downstream effects? This paper examines fertility choices following a presidential regime change. Fertility is an irreversible, long-horizon decision made by households, with ensuing

^{*}Dahl: UC San Diego, Norwegian School of Economics, CESifo, CEPR, IZA, and NBER (email: gdahl@ucsd. edu); Lu: University of Alberta (email: runjing1@ualberta.ca); Mullins: UC San Diego (email: wmullins@ucsd. edu). Rohini Pande was coeditor for this article. We thank Prashant Bharadwaj, Joseph Engelberg, Mark Huson, Vincent Pons, and Tom Vogl for valuable comments.

[†]Go to https://doi.org/10.1257/aeri.20210485 to visit the article page for additional materials and author disclosure statement(s).

effects on labor force participation, housing investments, and consumption choices. These effects may have distributional consequences, with groups targeted by political rhetoric or policy promises responding more to changes in national leadership.

The surprise outcome of the 2016 presidential election is especially valuable for identifying the effect of shifts in political power. Using option markets, Langer and Lemoine (2020) calculate a 12 percent probability of a Trump victory, while the *New York Times* and FiveThirtyEight's polling-based forecasts were 15 and 29 percent. We exploit the 2016 upset as a sharp and unexpected change in political power, using event study designs to compare fertility choices across groups likely to favor Republican or Democratic candidates.

Using administrative data for the universe of US births, our first approach compares fertility across counties with low versus high Democratic vote shares before versus after the November 2016 presidential election. Republican-leaning counties experience a marked increase in fertility relative to Democratic counties. Our difference-in-difference (DID) estimate equals 1.56 births per 1,000 women summed over nine quarters, for an annualized change equivalent to 1.2 percent of the 2015 US fertility rate.

Trump's candidacy attracted a different set of voters compared to prior Republican coalitions (Confessore and Cohn 2016). To capture these new Republican voters, we use the county-level *change* in the Republican vote share between 2008 and 2016 and classify Republican (Democratic) counties as those whose rightward shift was above (below) median. Using this second measure, we find that Trump's election caused the difference between Republican versus Democratic counties to widen by 2.79 births per 1,000 women, equivalent to 2.2 percent of the US fertility rate.

These two measures of partisanship capture different sources of variation: the correlation between them is only 0.16. We can combine both measures to define counties in the tails of the partisan distribution. To do so, we take counties that had a high ex ante level of Republican support *and* shifted strongly toward Trump and compare them to those with a high level of Democratic support *and* that shifted less. This contrast yields a larger estimate of 3.98, driven disproportionately by rising Republican births.

Our second approach examines Hispanic fertility relative to other groups, as Hispanics were singled out by the Trump campaign and voted approximately two-to-one for Hillary Clinton in 2016.¹ Using within-county identifying variation, we estimate a decline in the fertility rate for Hispanic mothers relative to non-Hispanics of 2.93 (2.3 percent of the US fertility rate), largely driven by falling Hispanic births. When we contrast Hispanics to two groups that heavily supported Trump—Whites in rural counties and Whites in evangelical counties—we find effects that are approximately 50 percent larger.² We further find heterogeneous effects by the degree of political polarization in a county (Autor et al. 2020): the

¹When launching his campaign, Trump said, "When Mexico sends its people, they're not sending their best.... They're sending people that have lots of problems, and they're bringing those problems with us. They're bringing drugs. They're bringing crime. They're rapists. And some, I assume, are good people.... It's coming from all over South and Latin America" (Phillips 2017).

²Papers examining fertility declines also find differences by demographic groups; see Bailey (2010); Buckles, Guldi, and Schmidt (2019); and Kearney, Levine, and Pardue (2022).

relative fertility decline for Hispanics is more than twice as large in more versus less polarized counties.

Taken together, the larger effects we find as the intensity of partisanship increases—that is, more politically extreme counties, Hispanics versus rural and evangelical Whites, and more polarized counties—all point toward political sentiment driving these effects. All of our results display parallel pre-trends, each measure of partisanship is robust to alternate definitions, and effects are persistent.

There could be multiple mechanisms underlying these partisan fertility responses. For example, when presidential regime shifts occur, expected or actual policies favoring specific groups could lead to partisan changes in family size decisions. Partisans of the winning side could also become more optimistic about the direction of the economy, leading to an income effect for fertility. Further, a Trump victory could cause Republicans and Democrats to update their views about the political and social climate, thereby affecting their willingness to bring a child into the world.

To place our results in perspective, we examine the two preceding party-switching presidential elections. After George W. Bush barely won the 2000 election, we find some evidence that fertility in Democratic versus Republican counties falls, particularly for those with low evangelical population shares. For Obama's 2008 election victory, which was not a surprise, we find no partisan fertility effect; however, the Great Recession confounds this analysis.

Our estimated fertility effects are comparable to the effects of unemployment and cash transfers on fertility. For example, Dettling and Kearney (2014) and Schaller (2016) report that a 1 percent increase in the unemployment rate is associated with a decrease in birthrates between 1.4 and 2.2 percent. Similarly, Raute (2019) and Milligan (2005) find that a \$1,000 increase (in 2020 US dollars) in cash subsidies for a birth results in a 1.8–2.1 percent increase in fertility.

Our paper relates to a recent literature that documents rising political polarization in the United States (Autor et al. 2020; Bertrand and Kamenica 2018; Boxell, Gentzkow, and Shapiro 2020; Gentzkow 2016; Dimock and Wike 2020). COVID-19 has highlighted that political polarization extends to health-seeking behaviors, such as social distancing and vaccinations (e.g., Allcott et al. 2020; Chen et al. 2020; Fridman, Gershon, and Gneezy 2021; Grossman et al. 2020). A few papers report a relationship between partisanship and spending on consumer goods (Benhabib and Spiegel 2019; Gerber and Huber 2009; Gillitzer and Prasad 2018), but others have challenged this link (McGrath 2017; Mian, Sufi, and Khoshkhou, forthcoming). Further, a group of papers has linked partisanship with financial outcomes, such as tax evasion, stock market trading, corporate credit, and retirement investing (Cookson, Engelberg, and Mullins 2020; Cullen, Turner, and Washington 2021; Dagostino, Gao, and Ma 2020; Kempf and Tsoutsoura 2021; Meeuwis et al. 2021).³

Across many nations, growing political polarization and declining fertility are two fundamental challenges facing society. We estimate effects at the intersection

³Our paper relates to a broader literature on the economic determinants of fertility, including unemployment, income, housing prices, coal busts, fracking booms, Medicaid eligibility, COVID-19, cash transfers, and child subsidies (Aizer, Eli, and Lleras-Muney 2020; Autor, Dorn, and Hanson 2019; Black et al. 2013; Buckles, Hungerman, and Lugauer 2021; Cohen, Dehejia, and Romanov 2013; Currie and Schwandt 2014; Dettling and Kearney 2014; Duncan, Mansour, and Rees 2017; Kearney and Levine 2009, 2021; Lindo 2010; Lovenheim and Mumford 2013; McCrary and Royer 2011; Raute 2019; Schaller 2016).

of these two forces. Our contribution is to causally link partisan sentiment to one of the most consequential household decisions: whether to have a child (Becker 1960). Unlike many consumption and investment choices, having a child is a long-term commitment requiring significant time and money: the USDA-estimated cost of raising a child to age 17 is \$233,000 (Lino 2020).

Growing partisanship makes understanding the downstream effects of elections increasingly relevant. The shifts in fertility we identify have practical implications for regional public finance and population-based congressional apportionment, given partisan sorting across residential geographies (Bernstein et al. 2021; Brown and Enos 2021; Kaplan, Spenkuch, and Sullivan 2022).⁴ Moreover, understanding the drivers of fertility is important in light of declining and below-replacement fertility and its structural effects on economic growth (Jones 2020).

I. Data and Research Design

We begin by examining how fertility responds to the unexpected election victory of candidate Trump in 2016. We use two main strategies in a DID design: comparing fertility in Republican- versus Democratic-leaning counties and comparing Hispanic fertility to that of non-Hispanics.

A. Fertility Data

We use restricted-use US administrative natality data from 1994 to 2019 from the National Center for Health Statistics (NCHS) (National Center for Health Statistics 2022). The data covers the universe of US births and provides detailed information that includes the month of birth (MOB), the month of the first day of the mother's last menstrual period (MLMP), and the mother's age, race/ethnicity, and county of residence. We restrict our attention to singleton births to US resident mothers between the ages of 18 and 44.

Our main outcome of interest is the number of births conceived in a county-month per 1,000 females between 15 and 44 years old.⁵ We use mothers' reported MLMP as a proxy for conception date following the literature (e.g., Dehejia and Lleras-Muney 2004).⁶ Summary statistics for fertility are in Table A1; the mean monthly fertility rate in a county is 4.5 births per 1,000 females. We deseasonalize fertility by sub-tracting its county \times month-of-year average using data starting from 2010 and refer to this variable as excess fertility.

The natality data only records the *month* of the beginning of the mother's last menstrual period. There is typically a seven-day lag between the first day of menses

⁴For example, New York lost a congressional seat to Minnesota by 89 residents based on the 2020 Census (Goldmacher 2021).

⁵We use as the denominator the number of fertile females between 15 and 44 years old—rather than 18 and 44—because US intercensal county population estimates by age, sex, and ethnicity are reported in five-year age bins. The population estimates are from the Census Bureau. We adjust births due to the extra day in February of leap years by multiplying the fertility rate in that month by 28/29. To ensure that the fertility rate is calculated based on a reasonably sized female pool, we drop counties whose fertile female population is below the tenth percentile in 2012 (i.e., 769 women).

⁶We remove misreported records by requiring the difference between MOB and MLMP to be between 5 and 12 months.

and the fertile period, which lasts approximately two weeks (National Center for Health Statistics 2005). Thus, MLMP measures the month of conception with noise. Since the election occurred on November 8, 2016, a mother whose MLMP is in October could have conceived her child after the election. Assuming a uniform distribution of conception dates in a month, about 30 percent of mothers whose MLMP is in October are predicted to conceive after the election.

B. Difference-in-Differences Event Study

Our main research design is a DID event study using the 2016 presidential election as the event. Our first approach compares fertility across Democratic and Republican counties before versus after the election. To measure county partisanship, we obtain the county-level vote share in presidential elections from the MIT Election Data and Science Lab. In our first definition, counties are categorized as Democratic if their Democratic vote share in 2012 is above the median, and Republican otherwise.

To include the new Republican voters who were drawn to Trump in 2016, our second definition uses the county-level *change* in the Republican vote share between 2008 and 2016 and classifies counties with an above-median change (i.e., a shift of more than 5.8 percentage points) as Republican, and Democratic otherwise.

Our first regression model is

(1)
$$\mathbf{Y}_{ct} = \sum_{t=-3}^{8} \beta_t \times Democratic_c + \alpha_c + \alpha_t + \epsilon_{ct}$$

where Y_{ct} is the excess fertility rate in county c and time t, which is the number of quarters relative to the presidential elections. We use t = -1 as our comparison period. Our treatment variable is *Democratic_c*, which equals one if county c is classified as Democratic, and zero otherwise. We include event time fixed effects α_t to control for national fertility trends. Including county fixed effects α_c is largely redundant because our excess fertility rate already controls for county \times month-of-year effects.⁷ We cluster standard errors by county.

While the data are monthly, for precision and ease of presentation in our main analyses, we collapse the data by quarter. For the 2016 election, we define t = 0 as October, November, and December. As described in Section IA, October is a partially treated month, which is why we group it with November and December.

Our second approach compares Hispanic to non-Hispanic fertility. In contrast to our first approach, this compares Hispanic to non-Hispanic mothers within counties rather than using an across-county design. The regression model is

(2)
$$\mathbf{Y}_{kct} = \sum_{t=-3}^{8} \beta_t \times Hispanic_k + \alpha_{kc} + \alpha_t + \epsilon_{kct},$$

where Y_{kct} is the excess fertility rate for females belonging to ethnic group k in county c in time t. *Hispanic*_k is one if the ethnic group is Hispanic, and zero otherwise. Similar to equation (1), ethnicity-specific county fixed effects α_{kc} are largely

⁷We obtain excess fertility by subtracting county \times month-of-year means, which is not perfectly colinear with county fixed effects because it is based on a longer sample period.

redundant given that excess fertility is calculated by subtracting ethnicity \times county \times month-of-year means for each group.

If the result of the 2016 presidential election was unanticipated and fertility trends across counties or across different ethnic groups would have been parallel in the absence of the election, the β_t vectors in equations (1) and (2) identify the impact of the presidential election on fertility decisions before and after the election. As we will show, both of these conditions appear to hold.

II. Results

A. Fertility Effects across Political Geographies

Graphical Evidence.—In Figure 1, we show the effects of the 2016 election on fertility in Democratic and Republican counties. In panel A1, we start by comparing the raw trend of monthly excess fertility in counties with an above- or below-median Democratic vote share in the 2012 presidential election. The blue line captures the excess fertility in Democratic counties and the red in Republican counties. Both lines are normalized to be zero in September 2016. The vertical shaded area spanning the months of October and November indicates the period immediately surrounding the election. As described in Section IA, October represents a partially treated month due to how conceptions are measured in our data.

The first thing to note is that the blue and red lines lie on top of each other in the preperiod, consistent with the assumption of parallel trends. Postelection, looking at the time pattern of the blue and red lines separately provides suggestive evidence of each group's fertility dynamics. The red line for Republican counties spikes in November and December. While there is little evidence of an effect on Democratic fertility in these two months, over time the blue line declines steadily. This graphical evidence suggests that Republicans have an immediate jump in births postelection, while Democratic fertility appears to exhibit a trend break which becomes progressively more negative.

A key advantage of our approach is that it can account for common shocks to Republican and Democratic fertility. Panel A2 plots the β_t coefficients from equation (1), capturing the effect of the presidential election on differential fertility across Democratic versus Republican counties. Confirming the pattern in the raw monthly data, there are no pre-trends in the quarterly event study regression coefficients. Panel A1 shows that the difference between the red and blue lines persists through the entire postelection period. The quarterly regression coefficients plotted in panel A2, which are always statistically different from zero, confirm this pattern.

The results in panels A1 and A2 use the Republican vote share before Trump was an active politician. This captures the traditional Republican coalition of voters. In 2016, Trump attracted a different set of voters, so as an alternative we use the county-level change in the Republican vote share between 2008 and 2016. This measure captures counties where new voters were most attracted to the Trump platform. These two measures of partisanship capture different sources of variation: their correlation is only 0.16.

Panel B1 plots the monthly excess fertility for counties with an above-median shift toward the Republican party (red dashed line) and counties with a

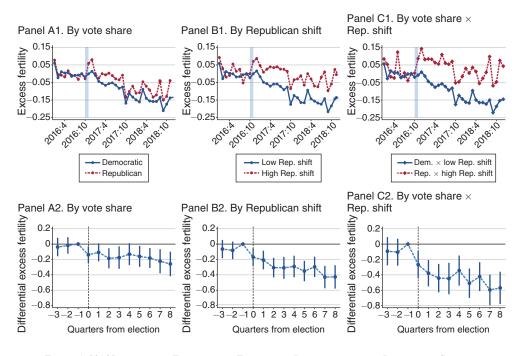


FIGURE 1. 2016 PRESIDENTIAL ELECTION AND FERTILITY IN DEMOCRATIC VERSUS REPUBLICAN COUNTIES

Notes: This figure plots effects (and 95 percent confidence intervals) for the excess fertility rate in Democratic-leaning relative to Republican-leaning counties around the 2016 presidential election. Fertility rates in panels A1 to C1 are normalized to September 2016. As described in Section IA, October represents a partially treated month, so we shade October and November to indicate the onset of treatment. Panel A1 plots the excess fertility rate in counties with above-median versus below-median Democratic vote shares in the 2012 presidential election; panel B1 counties with below-median versus above-median *changes* in Republican vote shares between the 2008 and 2016 presidential elections; panel C1 counties with *both* above-median Democratic vote shares and below-median Republican shifts versus counties where both measures are the opposite. Panels A2 to C2 plot the interactions between quarters and an indicator for Democratic-leaning counties from equation (1). The omitted quarter is -1 (July–September 2016). Specifications correspond to Table 1, columns 1 to 3.

below-median shift (blue line). Panel B2 plots the quarterly regression coefficients. Again there is no evidence of differential pre-trends either in the raw data or in the regression setting.

The gaps in excess fertility using the rightward shift measure (column B) are larger than those using the Republican vote share (column A). One possible explanation is that counties that swung most toward the Republican Party were the most enthused by Trump's policies.

In column C, we define extreme Republican counties (dashed red line) as those with a below-median Democratic vote share and an above-median vote shift toward Trump. We similarly define extreme Democratic counties (blue line). This interaction of our two measures results in even stronger effects, consistent with the low correlation between them. By combining them, we define treated counties as those that have both types of Trump support (traditional Republican or newly enthused), while excluding both types from the control group.

Comparing these counties in the tails of the partisan distribution yields substantially larger effects: an increase of approximately 150 percent compared to column A and 50 percent compared to column B. The stronger fertility response we find for more politically extreme counties adds credence to the idea that partisanship drives our results.⁸

Regression Results.—Regression results corresponding to Figure 1 are found in Table 1, columns 1 through 3. For example, the *Treat*₀ coefficient in column 1 represents a drop of 0.139 excess births per 1,000 women in Democratic relative to Republican counties in the quarter of the election (quarter 0). The average treatment effect in quarters 0 through 8 amounts to 0.173 excess births, a shift equivalent to 1.2 percent of the 2015 national fertility rate. In 2015, Republican counties already had higher quarterly fertility than Democratic ones: 14.83 versus 13.81 births per 1,000 women. Our estimates imply that Trump's election widened this gap by 17 percent.

Column 2 indicates a larger effect, with an average of 0.309 fewer excess births in counties with a below- versus above-median shift in the Republican vote share. This change corresponds to 2.2 percent of the 2015 national fertility rate. This widens an originally small Republican versus Democratic fertility gap of 0.18 by over 170 percent. Finally, column 3 shows an even larger treatment effect for the subsample comparing extreme Democratic versus extreme Republican counties. Following the election of Trump, there were 0.44 fewer excess births (amounting to 3.2 percent of the 2015 fertility rate for these counties), widening a preexisting gap of 0.85 by around 50 percent.

To aid interpretation, the sum of treatment effects in quarters 0 through 8 in column 1 translates into a fertility gap of 46,000 births (0.6 percent of the total number of births in 2015) between Republican and Democratic counties.⁹ Similarly, the sum of treatment effects in column 2 translates into a fertility gap of 66,000 births (0.9 percent of total births). Column 3 translates to 62,000 births (1 percent of births in this subsample).

In our main specification, we restrict the time window to the three quarters before the election to minimize contamination by party primaries, as these may have had direct effects on partisan fertility. Online Appendix Figure A2 expands the time window to seven quarters preelection for completeness.

B. Fertility Effects by Ethnicity

As a different measure of political partisanship, we compare Hispanics to non-Hispanics. This split is motivated by Trump's rhetoric toward the Hispanic population, beginning with his first campaign speech in which he compared Mexican immigrants to rapists and criminals. Moreover, Hispanics have historically backed Democratic candidates by a wide margin, voting two-to-one for Hillary Clinton in 2016.

⁸In May 2016 there is a sizable jump in the dashed red line in panel C1. This was the month that Trump became the presumptive nominee of the Republican party, which may have contributed to the jump.

⁹This translation requires an additional assumption about the counterfactual postelection trend. We extrapolate the change in the total excess fertility rate over the preperiod (January 2015 to September 2016) to the postperiod and calculate the deviations in the number of births from this counterfactual for each group.

	Dem. versus Rep. (1)	Low versus high Rep. shift (2)	Vote share × shift (3)	Hisp. versus non-Hisp. (4)	Hisp. versus rural White (5)	Hisp. versus evan. White (6)
Treat_3	-0.038 (0.061)	-0.065 (0.061)	-0.092 (0.094)	-0.051 (0.059)	-0.010 (0.088)	-0.062 (0.075)
Treat_2	$-0.018 \\ (0.055)$	-0.082 (0.058)	$-0.105 \\ (0.089)$	-0.061 (0.050)	-0.071 (0.083)	$\begin{array}{c} -0.101 \\ (0.069) \end{array}$
Treat ₀	-0.139 (0.056)	-0.169 (0.058)	-0.267 (0.091)	-0.198 (0.048)	-0.249 (0.083)	-0.258 (0.067)
Treat ₁	-0.108 (0.060)	-0.207 (0.062)	-0.379 (0.088)	-0.278 (0.056)	-0.439 (0.089)	-0.379 (0.074)
Treat ₂	-0.185 (0.067)	-0.306 (0.065)	-0.443 (0.094)	-0.315 (0.057)	-0.523 (0.089)	-0.430 (0.074)
Treat ₃	-0.176 (0.075)	-0.309 (0.073)	-0.448 (0.105)	-0.320 (0.058)	-0.548 (0.096)	-0.478 (0.083)
Treat ₄	-0.131 (0.073)	-0.291 (0.072)	-0.344 (0.100)	-0.342 (0.067)	-0.512 (0.101)	-0.488 (0.090)
Treat ₅	-0.160 (0.069)	-0.351 (0.068)	-0.509 (0.097)	-0.358 (0.063)	-0.614 (0.100)	-0.542 (0.089)
Treat ₆	-0.181 (0.066)	-0.296 (0.067)	-0.423 (0.096)	-0.404 (0.068)	-0.573 (0.099)	-0.586 (0.089)
Treat ₇	-0.223 (0.080)	-0.429 (0.074)	-0.596 (0.102)	-0.367 (0.077)	-0.640 (0.107)	-0.549 (0.099)
Treat ₈	-0.258 (0.082)	-0.427 (0.077)	-0.570 (0.107)	-0.340 (0.100)	-0.600 (0.131)	-0.539 (0.123)
Avg. treat (0 to 8)	-0.173	-0.309	-0.442	-0.325	-0.522	-0.472
2015 avg. birthrate Avg. treat/2015 avg.	$14.007 \\ -1.2\%$	14.007 -2.2%	13.878 -3.2%	13.896 -2.3%	$15.701 \\ -3.3\%$	$15.221 \\ -3.1\%$
2015 avg. treat-control gap Avg. treat/2015 avg. gap	$-1.018 \\ 17\%$	$-0.181 \\ 171\%$	$-0.848 \\ 52\%$	2.994 11%	1.925 -27%	$2.308 \\ -20\%$
Observations	33,756	33,756	19,608	67,920	53,052	50,904
R^2	0.367	0.369	0.394	0.314	0.247	0.272
County FE	Y	Y	Y	Ν	Ν	Ν
$\text{County} \times \text{ethnicity FE}$	Ν	Ν	Ν	Y	Y	Y
Quarter event FE	Y	Y	Y	Y	Y	Y
N clusters (counties)	2,813	2,813	1,634	2,830	2,830	2,830

TABLE 1-2016 PRESIDENTIAL ELECTION AND FERTILITY

Notes: This table reports the estimates depicted in panels A2 to C2 in both Figures 1 and 2. The dependent variable is the excess fertility rate. The treatment group is the first group named in each column header. Columns 1 to 3 report interactions between quarters and a Democratic-leaning indicator from equation (1). Column 1 compares counties with above-median to those with below-median Democratic vote shares in the 2012 presidential election; column 2 counties with below-median versus above-median changes in Republican vote shares between the 2008 and 2016 presidential elections; column 3 counties with both above-median Democratic vote shares and below-median Republican shifts to counties where both measures are the opposite. Columns 4 to 6 report interactions between quarters and an indicator for Hispanic ethnicity from equation (2). Column 4 compares Hispanics to non-Hispanics; column 5 versus non-Hispanic Whites living in rural counties; column 6 versus non-Hispanic Whites living in counties with above-median evangelical shares. The omitted quarter is -1 (July–September of 2016). Standard errors are clustered by county.

Figure 2 plots excess fertility surrounding the 2016 election. Panel A1 shows similar pre-trends for Hispanic and non-Hispanic women. Following the election, non-Hispanic fertility rises for two months, while that of Hispanics *falls* markedly

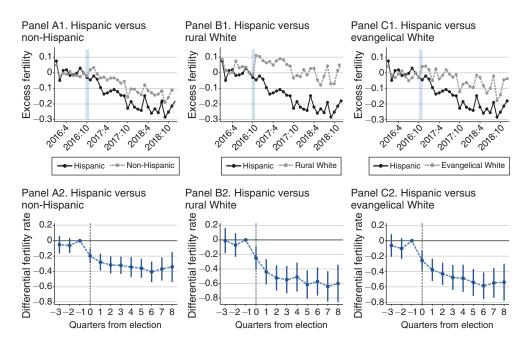


FIGURE 2. 2016 PRESIDENTIAL ELECTION AND HISPANIC VERSUS NON-HISPANIC FERTILITY

Notes: See notes to Figure 1. This figure plots effects (and 95 percent confidence intervals) for the excess fertility rate of Hispanics versus other groups around the 2016 presidential election. Panel A1 plots the excess fertility rate of Hispanics versus non-Hispanics; panel B1 versus non-Hispanic Whites living in rural counties (using the Census Bureau definition); panel C1 versus non-Hispanic Whites living in counties with above-median evangelical shares (excluding historically Black protestant churches). The data are from the Association of Religion Data Archives. Panels A2 to C2 plot the interactions between quarters and an indicator for Hispanic ethnicity from equation (2). Specifications correspond to Table 1, columns 4 to 6.

over time; the gap between the two persists in every month in the postelection period. Panel A2 plots the quarterly regression estimates for equation (2); note that all identifying variation in this regression is within-county. There are no differential pre-trends, but there are large and consistent negative fertility effects. Corresponding quarterly estimates are reported in Table 1. Over the posttreatment period, the average quarterly effect is 0.325 fewer Hispanic versus non-Hispanic births per 1,000 women. This shift is equivalent to 2.3 percent of the US 2015 birthrate.

Given the strong support for Trump among Whites in rural areas, in column B we replace the control group with non-Hispanic Whites in predominantly rural counties. Panel B1 shows an immediate and dramatic rise in rural non-Hispanic White fertility, contrasting sharply with the large drop in Hispanic fertility. Trump also had strong support from evangelical Whites, so in column C we use counties with an above-median evangelical share as the control. These evangelical counties have weak correlation with rural counties (0.17) yet also exhibit strong differential fertility relative to Hispanics. Using these alternative comparison groups yields an average effect size that is roughly 50 percent larger.

Hispanics have a higher baseline fertility rate compared to non-Hispanics, rural Whites, and evangelical Whites. Trump's election victory narrowed the fertility gaps by 11, 27, and 20 percent, respectively.

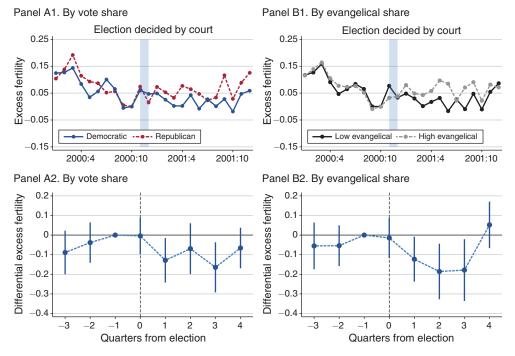


FIGURE 3. 2000 PRESIDENTIAL ELECTION AND FERTILITY

Notes: This figure plots effects (and 95 percent confidence intervals) for the 2000 presidential election. Excess fertility rates in panels A1 and B1 are normalized to October 2000. The election was decided in December 2000 by the Supreme Court. November represents a partially treated month, so we shade November and December to indicate the onset of treatment. Panel A1 plots the excess fertility rate in counties with above-median versus below-median Democratic vote shares in the 1996 presidential election; panel B1 counties with below-median versus above-median evangelical population shares. Panels A2 and B2 plot the interactions between quarters and indicators for Democratic-leaning counties or evangelical counties (equation (1)). The omitted quarter is -1 (August–October 2000). Specifications correspond to Table A2, columns 1 and 2.

C. Results from the 2000 Presidential Election

To place our results in perspective, we examine the close election between George W. Bush and Al Gore in 2000. Bush barely won the election, with the Supreme Court determining the final outcome in December. During this election period, the level of polarization in US politics and across candidates was substantially lower than in 2016 (Enke 2020; Pew Research Center 2014).

When we compare Republican- to Democratic-leaning counties in Figure 3, we find some evidence that relative Democratic fertility falls, with an average quarterly effect of 0.087 births per 1,000 women (0.6 percent of the 1999 average birthrate). Bush had particularly strong support among evangelical voters (Niebuhr 2000). Comparing counties with low and high evangelical shares, we also find sizable drops in relative fertility for less evangelical counties in the three quarters after the election (0.090 births per 1,000 women, or 0.6 percent of the average birthrate).¹⁰ Corresponding regression results are reported in Table A2.

¹⁰We limit the analysis to the three quarters postelection because the NCHS began a staggered revision process for birth data collection starting in 2003 (National Center for Health Statistics 2017). In online Appendix Figure A5, we extend the preperiod, which is possible with this data.

Obama's 2008 election victory was not a surprise, and the Great Recession confounds any analysis. However, for completeness we present results in online Appendix Figure A6.

D. Robustness

Online Appendix Table A3 provides robustness results for the 2016 election. Columns 1 to 6 conduct a mediation analysis, adding controls for county income, income squared, and two-digit North American Industry Classification System (NAICS) employment shares to the specifications used in Table 1. Columns 7 and 8 modify the vote share cutoffs and base year used for our two county partisanship measures. The resulting estimates are similar.

Column 9 replaces the Hispanic treatment group with Mexicans (the largest Hispanic group) and finds similar effects. While Trump targeted Hispanic immigration in particular, it is possible that African American and other minorities' fertility was affected. However, as we show in column 10, we find limited evidence for this: there is a reduction in non-Hispanic minority versus White fertility in the first postelection quarter but no significant effect thereafter.

In online Appendix Figures A2 and A3, we expand the time window to two years before the election so as to include the primary nominations. After Trump became the presumptive Republican nominee, there was an immediate drop in relative Hispanic fertility.¹¹ There is not a similar effect by partisan affiliation; this may reflect that Trump winning the nomination was viewed as, if anything, increasing the probability of a Democratic victory.

Next, we replace the dependent variable with the Google search index for the term "pregnancy test." Consistent with our main results, online Appendix Table A4 shows that Democratic-leaning designated marketing areas (DMAs) and those with a high proportion of Hispanics both see relative declines in this search following the 2016 election.

As a final exercise, we explore whether more politically polarized counties experience larger effects. We take advantage of the arguably exogenous shock to local economic conditions caused by the China trade shock. Autor et al. (2020) show that trade-exposed counties became more polarized, both on the left and right of the political spectrum; we use their proxy for county-level polarization.

We create two interaction terms, multiplying β_t in equation (2) with whether a county is above or below the median of the instrumented China trade shock of Autor et al. (2020). Results are plotted in online Appendix Figure A4. The difference in the gap between Hispanics and non-Hispanics in more versus less polarized counties, summed over the nine quarters after the election, is statistically significant (*p*-value = 0.005). The postelection percentage point difference between Hispanics and non-Hispanics is more than twice as large (214 percent) in more versus less polarized counties.

¹¹We determine the timing using the Iowa Electronic Markets (RCONV16).

III. Mechanisms

This section considers possible mechanisms for the effect of Trump's victory on fertility. We recognize that multiple forces could be in play simultaneously and discuss several below. There could also be differential changes along other dimensions, such as the composition of migrants (e.g., Noe-Bustamante and Flores 2019), within-household dynamics due to the gender gap in voting since women favor Democratic candidates (e.g., Center for American Women and Politics 1980–2020), and misinformation in a polarized environment (e.g., Allcott and Gentzkow 2017).

Policy Changes.—Democrats and Republicans favor different policies, and when presidential regime shifts occur, policies change. According to a 2018 Pew Research Center survey, the top three issues for Republicans—reducing undocumented immigration, cutting the national debt, and avoiding tax increases—do not overlap with those of Democrats (Parker, Morin, and Horowitz 2019). Likewise, three of the top five Democratic priorities (dealing with climate change; reducing inequality; and increasing spending on social security, Medicare, and Medicaid) are not in the Republican top five.

This divergence in policy priorities, coupled with a shift in control of the executive branch, could lead to changes in family size decisions. Among young adults who had or expected to have fewer children than their ideal number, a large fraction cite reasons that could be affected by policy (Miller 2018). The top reason is the cost of childcare (64 percent), followed closely by a lack of family leave (39 percent). Additionally, respondents cite worries about domestic politics (36 percent), climate change (33 percent), and global instability (37 percent) as reasons for not having children. This suggests that either actual or expected policy changes could drive differential partisan fertility.¹²

Immigration policy could be especially salient for Hispanics since it is an important point of divergence between the two parties. To examine whether the Democratic versus Republican results are driven by Hispanic fertility, we exclude Hispanic births and continue to find sizeable effects.¹³ So, while changes to immigration policy may reduce relative Hispanic fertility, this cannot be the only explanation for the county-level political party results.¹⁴

Economic Optimism.—Another possible mechanism is that fertility responds to changes in economic optimism.¹⁵ As documented in the literature, partisans of the winning side in a presidential election become more optimistic about the

¹² Supreme Court nominations from Trump could also have been pivotal for reproductive rights and the possible repeal of the ACA.

 $^{^{13}}$ The new coefficients averaged over the postelection period are 53, 84, and 85 percent of the estimates in columns 1–3 in Table 1, respectively.

¹⁴ A related mechanism for the Hispanic effect is that newly arrived immigrants have higher fertility, and Hispanic immigration fell after Trump's victory. However, this does not explain the rise in fertility for rural Whites and evangelical Whites or our results for Republican counties.

¹⁵ Shifts in optimism may reflect general expectations or beliefs about specific policies that could economically impact an individual's group. For example, the TCJA capped the SALT tax deduction, disproportionately impacting voters in Democratic states.

direction of the economy (Bartels 2002; Evans and Andersen 2006; Mian, Sufi, and Khoshkhou, forthcoming). Online Appendix Figure A1 plots the percentage of positive minus negative responses (labeled "net better") to the question "Do you think the nation's economy is getting better or worse?" Republican voters became immediately more optimistic following Trump's election, with the net better fraction rising from -63 to +63 percent over four months. In contrast, for Democrats this falls from +52 to -4 percent, after which it continues to erode. Similar swings in optimism, but in the opposite direction, occurred after the 2020 presidential election.

The partisan patterns in optimism, where Republicans' economic outlook improved almost instantly postelection, while Democrats' sentiment worsened much more gradually, line up with the dynamics we find for fertility. One interpretation is that fertility responds to people's perceptions about the direction of the economy: Democrats were worried after the election, and their world view worsened steadily throughout the Trump administration.

Updating Beliefs about the Political and Social Climate.—We examine Trump's preelection campaign visits to provide additional insight into possible mechanisms. Individuals may update their probabilities of a Trump victory when he makes a campaign stop, affecting both expected policy and economic optimism. However, after the Iowa prediction market reveals Trump as the clear favorite to win the nomination in February 2016, the market's probability of a *Democratic* victory in the election begins a rising trend. This suggests that Republicans should become less optimistic about future policy and economic conditions and so reduce their fertility (and vice versa for Democrats).

A mechanism that predicts an opposite-signed effect is that campaign stops cause people to update their view of other Americans' values. Views about the political and social climate could affect individuals' willingness to bring a child into the world, even absent a policy channel. In particular, Trump rallies could lead Republicans to think that their world view has broader local support than they previously believed. Likewise, this could be a surprise to Democrats. We can test this for Hispanics, who are disproportionately Democratic voters. When a Hispanic couple sees the enthusiasm generated by Trump's visit and his anti-immigrant rhetoric, they might update beliefs about their acceptance in the community.

To test this, we use Trump's campaign visits, which attracted local attention, as indicated by spikes in Google searches (see online Appendix Figure A7). We use a triple DID dynamic event study comparing fertility between Hispanic and non-Hispanic females in counties before and after Trump's first visit, using counties he will visit later as controls (see Sun and Abraham 2021); implementation details are in online Appendix 1). The dynamic event study design accounts for potential heterogeneous effects across counties visited at different times as Trump's campaign strategy and rhetoric evolved.

Figure 4 plots the estimated treatment effects; corresponding regression estimates are in online Appendix Table A5. The Hispanic fertility rate relative to non-Hispanics in the same county starts to decrease in month -1, which is when partial treatment of mothers begins, and continues through month 2. By month 4 differential fertility has dissipated, with suggestive evidence of harvesting in month 5. Following

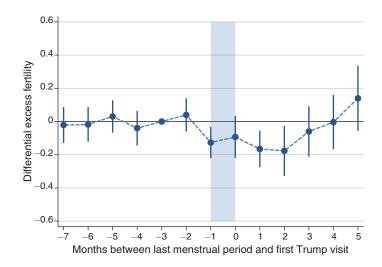


FIGURE 4. TRUMP CAMPAIGN VISITS AND RELATIVE HISPANIC FERTILITY

a campaign visit, the monthly average fertility rate for Hispanics falls relative to non-Hispanics by 1.5 percent of the mean.

A similar updating process at a more aggregate level could contribute to our national fertility results for Hispanics. Updating could also occur for non-Hispanics as they revise their view of the political climate (including immigration policy but also on other dimensions), but we cannot identify Republicans and Democrats at the individual level in fertility data.

IV. Conclusion

This paper documents a new consequence of elections and a new determinant of fertility. We are the first to causally link political partisanship to fertility choices. Unlike many household decisions, this is a long-term commitment, requiring significant time and money. We compare Republican- to Democratic-leaning counties before and after the 2016 presidential election. We find a change in fertility rates between Democratic and Republican counties amounting to 1.2–2.2 percent of the overall US fertility rate. We likewise find a disparate and negative impact on relative Hispanic fertility (2.3–3.3 percent of the fertility rate).

The larger effects we find as the intensity of partisanship increases point toward political sentiment driving these effects. Several partisan mechanisms could be at work, including changes to expected and actual policy, economic optimism, and beliefs about the political and social climate. In other words, our findings could be due to affordability concerns but also the quality of a potential child's life.

With an additional assumption about the counterfactual trend (see footnote 9), we estimate that Trump's victory led to over 7,000 additional births in Republican

Notes: This figure plots dynamic event study coefficients (and 95 percent confidence intervals) that compare fertility between Hispanic and non-Hispanic females (difference 1) in counties visited by Trump before and after his first campaign visit (difference 2), using counties he will visit later as controls (difference 3). Month -1 represents a partially treated month, so we shade both months -1 and 0 to indicate the onset of treatment. The omitted period is month -3. See online Appendix 1 for further implementation details; the specification corresponds to Table A5, column 1.

counties and 38,000 fewer Democratic births over nine quarters. Using our alternative measure based on the rightward vote shift instead of the vote share, we estimate 18,000 more Republican and 48,000 fewer Democratic births. The net effect using either measure is a drop of approximately 31,000 births, which can account for 20 percent of the decline in births over this period. A similar exercise focused on Hispanic fertility yields 10,000 fewer Hispanic births, corresponding to 37 percent of this group's decline postelection. A caveat of estimating group-specific fertility is that we cannot difference out common time-varying factors as we can with our DID estimates.

Growing political polarization and declining fertility are two challenges facing society. By estimating effects at the intersection of the two, this paper opens up several avenues for future research. These include disentangling mechanisms, the role of partisanship in interpreting information and in selective exposure, and whether growing polarization amplifies partisan effects on household decisions.

REFERENCES

- Aizer, Anna, Shari Eli, and Adriana Lleras-Muney. 2020. "The Incentive Effects of Cash Transfers to the Poor." NBER Working Paper 27523.
- Allcott, Hunt, and Matthew Gentzkow. 2017. "Social Media and Fake News in the 2016 Election." Journal of Economic Perspectives 31 (2): 211–36.
- Allcott, Hunt, Levi Boxell, Jacob Conway, Matthew Gentzkow, Michael Thaler, and David Yang. 2020. "Polarization and Public Health: Partisan Differences in Social Distancing during the Coronavirus Pandemic." *Journal of Public Economics* 191: Article 104254.
- Autor, David, David Dorn, and Gordon Hanson. 2019. "When Work Disappears: Manufacturing Decline and the Falling Marriage Market Value of Young Men." American Economic Review: Insights 1 (2): 161–78.
- Autor, David, David Dorn, Gordon Hanson, and Kaveh Majlesi. 2020. "Importing Political Polarization? The Electoral Consequences of Rising Trade Exposure." *American Economic Review* 110 (10): 3139–83.
- Bailey, Martha J. 2010. "Momma's Got the Pill': How Anthony Comstock and Griswold v. Connecticut Shaped US Childbearing." American Economic Review 100 (1): 98–129.
- Bartels, Larry M. 2002. "Beyond the Running Tally: Partisan Bias in Political Perceptions." *Political Behavior* 24 (2): 117–50.
- Becker, Gary S. 1960. "An Economic Analysis of Fertility." In *Demographic and Economic Change in Developed Countries*, 209–40. New York: Columbia University Press.
- Benhabib, Jess, and Mark M. Spiegel. 2019. "Sentiments and Economic Activity: Evidence from US States." *Economic Journal* 129 (618): 715–33.
- Bernstein, Asaf, Stephen B. Billings, Matthew Gustafson, and Ryan Lewis. 2021. "Partisan Residential Sorting on Climate Change Risk." NBER Working Paper 27989.
- Bertrand, Marianne, and Emir Kamenica. 2018. "Coming Apart? Cultural Distances in the United States over Time." NBER Working Paper 24771.
- Black, Dan A., Natalia Kolesnikova, Seth G. Sanders, and Lowell J. Taylor. 2013. "Are Children 'Normal'?" *Review of Economics and Statistics* 95 (1): 21–33.
- **Boxell, Levi, Matthew Gentzkow, and Jesse M. Shapiro.** 2020. "Cross-Country Trends in Affective Polarization." NBER Working Paper 26669.
- Brown, Jacob R., and Ryan D. Enos. 2021. "The Measurement of Partisan Sorting for 180 Million Voters." *Nature Human Behaviour* 5 (8): 998–1008.
- Buckles, Kasey, Melanie E. Guldi, and Lucie Schmidt. 2019. "Fertility Trends in the United States, 1980–2017: The Role of Unintended Births." NBER Working Paper 25521.
- Buckles, Kasey, Daniel Hungerman, and Steven Lugauer. 2021. "Is Fertility a Leading Economic Indicator?" *Economic Journal* 131 (634): 541–65.
- Center for American Women and Politics. 1980–2020. "Gender Gap: Voting Choices in Presidential Elections." https://cawp.rutgers.edu/gender-gap-voting-choices-presidential-elections (accessed August 25, 2021).

- Chen, M. Keith, Yilin Zhuo, Malena de la Fuente, Ryne Rohla, and Elisa F. Long. 2020. "Causal Estimation of Stay-at-Home Orders on SARS-CoV-2 Transmission." arXiv: 2005.05469.
- Cohen, Alma, Rajeev Dehejia, and Dmitri Romanov. 2013. "Financial Incentives and Fertility." *Review* of Economics and Statistics 95 (1): 1–20.
- Confessore, Nicholas, and Nate Cohn. 2016. "Donald Trump's Victory Was Built on Unique Coalition of White Voters." *New York Times*, November 9.
- Cookson, J. Anthony, Joseph E. Engelberg, and William Mullins. 2020. "Does Partisanship Shape Investor Beliefs? Evidence from the COVID-19 Pandemic." *Review of Asset Pricing Studies* 10 (4): 863–93.
- Cullen, Julie Berry, Nicholas Turner, and Ebonya L. Washington. 2021. "Political Alignment, Attitudes toward Government, and Tax Evasion." *American Economic Journal: Economic Policy* 13 (3): 135–66.
- Currie, Janet, and Hannes Schwandt. 2014. "Short- and Long-Term Effects of Unemployment on Fertility." Proceedings of the National Academy of Sciences 111 (41): 14734–39.
- Dagostino, Ramona, Janet Gao, and Pengfei Ma. 2020. "Partisanship in Loan Pricing." Unpublished.
- Dahl, Gordon B., Runjing Lu, and William Mullins. 2022. "Replication data for: Partisan Fertility and Presidential Elections." American Economic Association [publisher], Inter-university Consortium for Political and Social Research [distributor]. https://doi.org/10.3886/E159541V1.
- Dehejia, Rajeev, and Adriana Lleras-Muney. 2004. "Booms, Busts, and Babies' Health." *Quarterly Journal of Economics* 119 (3): 1091–130.
- **Dettling, Lisa J., and Melissa S. Kearney.** 2014. "House Prices and Birth Rates: The Impact of the Real Estate Market on the Decision to Have a Baby." *Journal of Public Economics* 110: 82–100.
- **Dimock, Michael, and Richard Wike.** 2020. America Is Exceptional in the Nature of Its Political Divide. Washington, DC: Pew Research Center.
- **Duncan, Brian, Hani Mansour, and Daniel I. Rees.** 2017. "It's Just a Game: The Super Bowl and Low Birth Weight." *Journal of Human Resources* 52 (4): 946–78.
- Enke, Benjamin. 2020. "Moral Values and Voting." Journal of Political Economy 128 (10): 3679–729.
- Evans, Geoffrey, and Robert Andersen. 2006. "The Political Conditioning of Economic Perceptions." Journal of Politics 68 (1): 194–207.
- Fridman, Ariel, Rachel Gershon, and Ayelet Gneezy. 2021. "COVID-19 and Vaccine Hesitancy: A Longitudinal Study." PLOS ONE 16 (4): Article 0250123.
- Gentzkow, Matthew. 2016. "Polarization in 2016." Unpublished.
- Gerber, Alan S., and Gregory A. Huber. 2009. "Partisanship and Economic Behavior: Do Partisan Differences in Economic Forecasts Predict Real Economic Behavior?" *American Political Science Review* 103 (3): 407–26.
- Gillitzer, Christian, and Nalini Prasad. 2018. "The Effect of Consumer Sentiment on Consumption: Cross-Sectional Evidence from Elections." American Economic Journal: Macroeconomics 10 (4): 234–69.
- Goldmacher, Shane. 2021. "New York Loses House Seat after Coming Up 89 People Short on Census." New York Times, April 26.
- Grossman, Guy, Soojong Kim, Jonah M. Rexer, and Harsha Thirumurthy. 2020. "Political Partisanship Influences Behavioral Responses to Governors' Recommendations for COVID-19 Prevention in the United States." *Proceedings of the National Academy of Sciences* 117 (39): 24144–53.
- Hungerman, Daniel, Kevin Rinz, Tim Weninger, and Chungeun Yoon. 2018. "Political Campaigns and Church Contributions." Journal of Economic Behavior and Organization 155: 403–26.
- Jones, Charles I. 2020. "The End of Economic Growth? Unintended Consequences of a Declining Population." NBER Working Paper 26651.
- Jones, Jeffrey M. 2017. Americans' Satisfaction with U.S. Same in 2017 as in 2016. Washington, DC: Gallup.
- Kaplan, Ethan, Jörg L. Spenkuch, and Rebecca Sullivan. 2022. "Partian Spatial Sorting in the United States: A Theoretical and Empirical Overview." *Journal of Public Economics* 211: Article 104668.
- Kearney, Melissa S., and Phillip B. Levine. 2009. "Subsidized Contraception, Fertility, and Sexual Behavior." *Review of Economics and Statistics* 91 (1): 137–51.
- Kearney, Melissa S., and Phillip Levine. 2021. "Will Births in the US Rebound? Probably Not." Brookings, May 24.
- Kearney, Melissa S., Phillip B. Levine, and Luke Pardue. 2022. "The Puzzle of Falling US Birth Rates since the Great Recession." *Journal of Economic Perspectives* 36 (1): 151–76.
- Kempf, Elisabeth, and Margarita Tsoutsoura. 2021. "Partisan Professionals: Evidence from Credit Rating Analysts." *Journal of Finance* 76 (6): 2805–56.
- Langer, Ashley, and Derek Lemoine. 2020. "What Were the Odds? Estimating the Market's Probability of Uncertain Events." NBER Working Paper 28265.

- Lindo, Jason M. 2010. "Are Children Really Inferior Goods? Evidence from Displacement-Driven Income Shocks." *Journal of Human Resources* 45 (2): 301–27.
- Lino, Mark. 2020. The Cost of Raising a Child. Washington, DC: US Department of Agriculture.
- Lovenheim, Michael F., and Kevin J. Mumford. 2013. "Do Family Wealth Shocks Affect Fertility Choices? Evidence from the Housing Market." *Review of Economics and Statistics* 95 (2): 464–75.
- McCrary, Justin, and Heather Royer. 2011. "The Effect of Female Education on Fertility and Infant Health: Evidence from School Entry Policies Using Exact Date of Birth." *American Economic Review* 101 (1): 158–95.
- McGrath, Mary C. 2017. "Economic Behavior and the Partisan Perceptual Screen." *Quarterly Journal* of Political Science 11 (4): 363–83.
- Meeuwis, Maarten, Jonathan A. Parker, Antoinette Schoar, and Duncan I. Simester. 2021. "Belief Disagreement and Portfolio Choice." NBER Working Paper 25108.
- Mian, Atif, Amir Sufi, and Nasim Khoshkhou. Forthcoming. "Partisan Bias, Economic Expectations, and Household Spending." *Review of Economics and Statistics*.
- Miller, Claire Cain. 2018. "Americans Are Having Fewer Babies. They Told Us Why." New York Times, July 5.
- Milligan, Kevin. 2005. "Subsidizing the Stork: New Evidence on Tax Incentives and Fertility." *Review* of Economics and Statistics 87 (3): 539–55.
- National Center for Health Statistics. 2005. "User Guide to the 2005 Natality Public Use File." National Vital Statistics System. https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/UserGuide2005.pdf (accessed May 28, 2019).
- National Center for Health Statistics. 2017. "Revisions of the U.S. Standard Certificates and Reports." National Vital Statistics System. https://www.cdc.gov/nchs/nvss/revisions-of-the-us-standardcertificates-and-reports.htm (accessed August 25, 2021).
- National Center for Health Statistics. 2022. "Restricted-Use Vital Statistics Data." National Vital Statistics System. https://www.cdc.gov/nchs/nvss/nvss-restricted-data.htm (accessed May 28, 2019).
- Niebuhr, Gustav. 2000. "The 2000 Campaign: The Christian Right; Evangelicals Found a Believer in Bush." *New York Times*, February 21.
- Noe-Bustamante, Luis, and Antonio Flores. 2019. Facts on Latinos in the U.S. Washington, DC: Pew Research Center.
- Novgorodsky, David, and Bradley Setzler. 2019. "Practical Guide to Event Studies." Unpublished.
- Parker, Kim, Rich Morin, and Juliana Menasce Horowitz. 2019. Looking to the Future, Public Sees an America in Decline on Many Fronts. Washington, DC: Pew Research Center.
- **Pew Research Center.** 2014. *Political Polarization in the American Public*. Washington, DC: Pew Research Center.
- Phillips, Amber. 2017. "They're Rapists.' President Trump's Campaign Launch Speech Two Years Later, Annotated." Washington Post, June 16.
- Raute, Anna. 2019. "Can Financial Incentives Reduce the Baby Gap? Evidence from a Reform in Maternity Leave Benefits." *Journal of Public Economics* 169: 203–22.
- Schaller, Jessamyn. 2016. "Booms, Busts, and Fertility: Testing the Becker Model Using Gender-Specific Labor Demand." Journal of Human Resources 51 (1): 1–29.
- Sun, Liyang, and Sarah Abraham. 2021. "Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects." *Journal of Econometrics* 225 (2): 175–99.

This article has been cited by:

- 1. Luis Guirola. 2025. Economic expectations under the shadow of party polarization: Evidence from 135 government changes. *European Economic Review* 171, 104910. [Crossref]
- 2. Anqi Jiao, Juntai Lu, Honglin Ren. 2024. Partisanship, optimism, and firm innovation. *Financial Management* 53:3, 543-577. [Crossref]
- 3. Kateryna V. Holland, Esther Im. 2024. Corporate Cash Flow Outcomes Across Presidencies: Still a Puzzle. SSRN Electronic Journal 114. . [Crossref]