MY457: Problem Set 3 - Difference in Differences

Pedro Torres-Lopez, Michael Ganslmeier, Daniel de Kadt

This problem set is formative and will not contribute to your final grade. However, it is designed to build
and deepen your conceptual understanding of the material and to practice applying the material in R. Using
tools and resources such as ChatGPT and Stack Overflow is allowed and encouraged. Bear in mind that you
are ultimately responsible for the work you submit, and that these tools often provide incorrect solutions.
Make sure that however you use these tools it aligns with your best interests, and enhances your learning in
this class.

This problem set must be submitted on Moodle by 5pm on Thu/21/Mar. You must also use the provided .Rmd
template to produce a .pdf with your answers. If your submission is late, is not a .pdf, or is not appropriately
formatted, you will not receive feedback on your work.

1 Concepts

This question reviews some of the concepts covered in class. Mathematical notation can be a useful tool to
explain concepts, but it’s important that you understand and can explain the concepts clearly and concisely.
If you want to support your explanations with mathematical notation, this page provides a tutorial on
including mathematical notation in Rmarkdown.

Consider a study of the effect of a treatment D; € 0,1 on Y; for all ¢ € 1,..., N. In this case, treatment occurs
across two dimensions: ) treatment group G; € 0,1, and i) time ¢ € 0, 1.

1.1. In this setting we can denote the following potential outcomes:

o Y;;(0): potential outcome for unit ¢ in period ¢ when untreated
o Y;t(1): potential outcome for unit ¢ in period ¢ when treated

Write out the realisations of these potential outcomes as observed data. Which are observed, when, and for
which groups?

In this case the realisation of each potential outcome would be written as Y;;. Now, we know that
Yt = Y;#(0) if in period ¢ individual is not in the treated group. On the other hand, Y;; = Y;:(1)
if individual i is in the treated group in the post period, and Y;;(0) if in the pre-period.

Note that in this setting, before getting treatment, all individuals will have Y;;(0). It is not
until treatment has been given that we observe $Y_ {it}(1) for the treated group.

1.2 What is the main assumption in a canonical two-period difference-in-differences setting? Explain how
violations of this assumption can impact the validity of the estimated treatment effect.

The main assumption in the canonical Diff-in-Diff setting is the parallel trends assumption.
We assume that if no treatment happened the outcomes between treated and control would
trend in parallel.

When this assumption is violated, the estimate of our treatment effect is going to be biased.
We would incorrectly assume a counterfactual trend (one that does not accurately capture
what would have happened without treatment), and therefore get a point estimate that is not
correct.
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1.3 Given repeated cross-sectional data, we can estimate a canonical two-period difference-in-differences
design with the following regression specification:

Y; = G +AG; +0T; + #(Gy x Ti) + &;
Explain the parameter (estimand) that each coefficient in the specification estimates.

& is the mean for the control group in the pre-treatment period. &+ % the same for the treated
group. § is the change in the mean for the control group in the post-treatment period compared
to the pre-treatment period. 7 is the change in the the mean for the treatment group in the
post-treatment period compared to the pre-treatment period, hence the treatment effect.

2 Simulations

In this question we will use simulated data to test some of our intuitions about difference-in-differences. The
advantage of using a simulated dataset is that we have explicit control over the data generating process, and
know the ‘true’ answer to any question we pose.

2.1. Explain the code below and relate it to a difference-in-differences data generating process. What kind of
data (panel or repeated-cross sectional) is this?

set.seed(123)
n_units <- 1000
tau <- 25000

G = rbinom(n_units, 1, 0.5)
for (i in 1:2) {
data <- tibble(
ID = 1:n_units,
G =G,
T = ifelse(i == 2, 1, 0)

if (i == 1) {
sim_data <- data
} else {
sim_data <- rbind(sim_data, data)
¥
}

YO <- rnorm(n_units, 50000, 2500)

data <- sim_data %>% mutate(

YO = c(Y0, YO*(1+1/10)),

YO = ifelse(G == 1, YO + 10000, YO),
Y1 = YO + tau,

Y = ifelse(G ==1& T == 1, Y1, YO)

)

We are creating a data frame with a 100 units. We randomly assign units into treatment and
control groups (G) and specify two periods, one pre-treatment and one post-treatment (T).

We create a continuous potential outcome under control which is normally distributed. In the
post-period, we increase this by 10%. We define our treatment effect to be 25,000 and add it



to the potential outcome under treatment.

Lastly, we define our realized outcome based on treatment group and treatment period (G and
T).
2.2 Without using a regression, estimate the canonical two-period difference-in-differences using only Y, G,

and t. What do you find?

Period | Control Treatment Diff

Pre 50025.7147832091 | 60034.0672387196 | 10008.3524555105
Post 55028.28626153 90037.4739625916 | 35009.1877010616
Diff 5002.57147832091 | 30003.406723872 25000.8352455511

When estimating the canonical Diff-in-Diff, we find an estimated treatment effect of 25,000.935.

2.3 Now estimate the difference-in-differences design using linear regression. Do you find any differences to
your previous estimation? Why or why not?

Estimate | Std. Error t value | Pr(>[t|)
(Intercept) | 50025.715 116.9478 | 427.76116 0
G 10008.352 166.5592 60.08888 0
T 5002.571 165.3891 30.24728 0
G:T 25000.835 235.5502 | 106.13803 0

We find the same estimated treatment effect.

2.4 Using the potential outcomes in our simulated data, create a plot visualizing the difference-in-differences
estimator.
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2.5 Now consider a new data generating process, given by the simulation code below. Explain how this code



is different to the code in question 2.1.

set.seed(123)
n_obs <- 1000
n_periods <- 20

tau_values <- c(1000, 3000, 3000, 2000, 5000, 3000, 9000, 6000, 7000, 10000,
9000, 8000, 6000, 3000, 7000, 2000, 5000, 2000, 1000)

tau <- setNames(tau_values, pasteO("tau_", 1:19))
G = rbinom(n_obs, 1, 0.5)
for (i in 1:20) {
treated_units <- ifelse(i > 5, sample(l:n_obs, size = floor(1/40*n_obs)), NA)

if (1 ==1) {
treated <- treated_units

} else {
treated <- c(treated, treated_units)
}
data <- tibble(
ID = 1:n_obs,
G =G,
P =i,
T = ifelse(ID %in’% treated, 1, 0)

if (i ==1) {
sim_data <- data
} else {
sim_data <- rbind(sim_data, data)
¥
¥

YO <- rnorm(n_obs, 50000, 2500)

sim_data <- sim_data %>
mutate (
YO = (1 + P/10) * YO + if_else(G == 1, 10000, 0),
Y1 = case_when(
P %in}% 1:19 ~ YO + taulpasteO("tau_", P)],

TRUE ~ YO
),

= if_else(G == 1 & T == 1, Y1, YO),
D=T=*G

data <- sim_data

Now we allow for staggered treatment adoption. We allow for different individuals to start
receiving treatment at different periods. With this, we also change the magnitude of treatment
depending on when an individual is treated — that is, we build in heterogeneity in treatment



effects over time.

2.6 Using the new simulated data, estimate the difference-in-differences design using a two-way fixed effects
linear regression. You can do this in multiple ways: using 1m and factor(), using 1m on de-meaned data,
using plm with model = "within" and effect = "twoways", or using fixest.



Estimate | Std. Error t value | Pr(>[t|)
(Intercept) 59394.61461 | 336.71674 176.3934131 | 0.0000000
D 2731.50390 | 256.74008 10.6391798 | 0.0000000
factor(P)2 4994.71515 66.71237 74.8694028 | 0.0000000
factor(P)3 9989.43030 66.71237 149.7388057 | 0.0000000
factor(P)4 14984.14545 66.71237 | 224.6082085 | 0.0000000
factor(P)5 19978.86060 66.71237 299.4776114 | 0.0000000
factor(P)6 24973.84425 66.71286 | 374.3482668 | 0.0000000
factor(P)7 29974.55940 66.71286 449.3070529 | 0.0000000
factor(P)8 34966.27455 66.71286 | 524.1309324 | 0.0000000
factor(P)9 39961.98970 66.71286 599.0147705 | 0.0000000
factor(P)10 44966.97334 66.71434 | 674.0225660 | 0.0000000
factor(P)11 49959.68849 66.71434 748.8597726 | 0.0000000
factor(P)12 54957.67214 66.71681 823.7454521 | 0.0000000
factor(P)13 59949.65579 66.72027 | 898.5223542 | 0.0000000
factor(P)14 64932.37094 66.72027 | 973.2030323 | 0.0000000
factor(P)15 69947.35458 66.72472 | 1048.2975009 | 0.0000000
factor(P)16 74916.33823 66.73015 | 1122.6759959 | 0.0000000
factor(P)17 79931.32188 66.73657 | 1197.7139492 | 0.0000000
factor(P)18 84904.30552 66.74398 | 1272.0893751 | 0.0000000
factor(P)19 89889.28917 66.75237 | 1346.6081617 | 0.0000000
factor(P)20 94875.00432 66.75237 | 1421.2978692 | 0.0000000
factor(ID)2 5215.43287 | 471.72768 11.0560247 | 0.0000000
factor(ID)3 -8013.44791 | 471.72768 -16.9874449 | 0.0000000
factor(ID)4 1877.12836 | 471.72768 3.9792627 | 0.0000694
factor(ID)5 5615.67968 | 471.72768 11.9044948 | 0.0000000
factor(ID)6 -757.35521 | 471.72768 -1.6054924 | 0.1084021
factor(ID)7 13987.95647 | 471.72768 29.6526092 | 0.0000000
factor(ID)8 13979.08280 | 471.72768 29.6337982 | 0.0000000
factor(ID)9 12923.45786 | 471.72768 27.3960136 | 0.0000000
factor(ID)10 -9423.58307 | 471.72768 -19.9767440 | 0.0000000
factor(ID)11 8796.20796 | 471.72768 18.6467922 | 0.0000000
factor(ID)12 -6852.53873 | 471.72768 -14.5264716 | 0.0000000
factor(ID)13 3486.93589 | 471.72768 7.3918408 | 0.0000000
factor(ID)14 6694.32979 | 471.72768 14.1910897 | 0.0000000
factor(ID)15 3315.74940 | 471.72768 7.0289482 | 0.0000000
factor(ID)16 -934.39071 | 471.72768 -1.9807841 | 0.0476299
factor(ID)17 6653.56157 | 471.72768 14.1046665 | 0.0000000
factor(ID)18 -5180.86270 | 471.72768 -10.9827406 | 0.0000000
factor(ID)19 -7029.63779 | 471.72768 -14.9018981 | 0.0000000
factor(ID)20 9975.36089 | 471.72768 21.1464397 | 0.0000000
factor(ID)21 4108.49049 | 471.72768 8.7094540 | 0.0000000
factor(ID)22 11227.88343 | 471.72768 23.8016211 | 0.0000000
factor(ID)23 5862.48666 | 471.72768 12.4276928 | 0.0000000
factor(ID)24 7121.18887 | 471.72768 15.0959742 | 0.0000000
factor(ID)25 5631.61449 | 471.72768 11.9382745 | 0.0000000
factor(ID)26 9172.61337 | 471.72768 19.4447216 | 0.0000000
factor(ID)27 4911.21286 | 471.72768 10.4111187 | 0.0000000
factor(ID)28 2515.79629 | 471.72768 5.3331539 | 0.0000001
factor(ID)29 -1115.65673 | 471.72768 -2.3650440 | 0.0180379
factor(ID)30 -10459.90498 | 471.72768 -22.1736088 | 0.0000000
factor(ID)31 9931.90387 | 471.72768 21.0543166 | 0.0000000
factor(ID)32 8714.00229 | 471.72768 18.4725271 | 0.0000000
factor(ID)33 -398.96934 | 471.72768 -0.8457620 | 0.3976962
factor(ID)34 9073.48859 | 471.72768 19.3345902 | 0.0000000
factor(ID)35 -8848.07694 | 471.72768 -18.7567475 | 0.0000000
factor(ID)36 1277.23620 | 471.72768 2.7075710 | 0.0067838
factor(ID)37 61.12372 | 471.72768 0.1295742 0 8969047




Estimate | Std. Error t-value | Pr(>[t])
D | 2731.504 256.7401 | 10.63918 0
S
D | 2731.504

2.7 Using the new data and either the fect package or the did package, estimate dynamic period-specific
ATTs and provide an event study plot. What do you find?

## Call:
## fect.formula(formula = Y ~ D, data = sim_data, index = c("ID",
## "P"), force = "two-way", method = "fe", se = TRUE, nboots = 200)
##
## ATT:
## ATT S.E. CI.lower CI.upper p.value
## Tr obs equally weighted 2661 665.3 1357 3965 0.00006326
## Tr units equally weighted 2603 692.2 1247 3960 0.00016931
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The estimated treatment effect is a bit lower than what we estimated in section 2.6, a bit
closer to the truth. This has to do with the fact that in 2.6 the ATT is an average effect over

the rolling units, since different units adopt treatment at different times, the TWFE estimator
might be somewhat biased.

3 Replication

In this section, we will use real-world data to reinforce what we have learned. We will analyse the dataset
employed in The Effects of Income Transparency on Well-Being: Evidence from a Natural Ezperiment.


https://yiqingxu.org/packages/fect/fect.html
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In recent decades, there has been an increasing push towards higher transparency in income, wealth, and
earnings. Transparency facilitates comparisons between individuals. In 2001, Norwegian tax records became
accessible online allowing individuals to have access to these easily, assuming they had access to internet.

The author uses this setting to analyze the effect of salary transparency on the subjective well-being of
individuals across the income distribution.

3.1 Read into R the replication data set (Norway-MSD.dta) and visualise the trend in Norwegian happiness
(po_happy) over the years. Include a vertical line to indicate when treatment came into effect.
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3.2 Explain, simply and in your own words, the causal inference problem faced by the authors (i.e., what
confounding are they concerned about?). Then explain, simply and in your own words, the author’s research
design and how it mitigates the problems identified.

The authors want to analyse whether making the tax records of individuals easily accessible
had an effect on the well-being of individuals. They specifically want to focus on the gap
between income ranks in happiness measures.

To do this, they rely on a quasi-experiment, where in 2001, the Norwegian tax records became
easily accessible online. They employ a Diff-in-Diff design (among others) to show that people
with higher incomes report on being happier compared to people with lower incomes after this
tax records became easily accessible.

3.3 In what way is the author’s design a difference-in-differences, and how does it differ from the cases we
have typically seen in the lecture? Do you have any potential concerns about the plausibility of the underlying
assumptions? You might benefit from reading section II of the paper closely.

It is a Diff-in-Diff design since we have individuals with different incomes G and a pre and post
period T. However, in this case, treatment is not binary and is rather continuous, reflecting



higher income when the value is higher.

3.4 Estimate the baseline specification as given in equation (1) in the paper. In addition to the difference-in-
differences components, the regression should include a dummy variable for each year, and should control for
marital status, education, household size, household workers, female, age and age squared. Hint: remember

to include categorical variables as factors() where appropriate.

Estimate | Std. Error t value | Pr(>t])
(Intercept) -0.0287713 | 0.0328310 | -0.8763473 | 0.3808456
imp_hh_rank 0.3108112 | 0.0270175 | 11.5040890 | 0.0000000
post__2001 -0.0701098 | 0.0351527 | -1.9944347 | 0.0461102
factor(year)1987 -0.0098852 | 0.0292977 | -0.3374044 | 0.7358136
factor(year)1989 -0.0086877 | 0.0289631 | -0.2999588 | 0.7642098
factor(year)1991 -0.0518002 | 0.0328077 | -1.5789039 | 0.1143646
factor(year)1993 -0.0105482 | 0.0328346 | -0.3212515 | 0.7480212
factor(year)1995 -0.0135428 | 0.0331743 | -0.4082319 | 0.6831053
factor(year)1997 -0.0003249 | 0.0311054 | -0.0104440 | 0.9916671
factor(year)1999 -0.0455749 | 0.0313510 | -1.4536975 | 0.1460367
factor(year)2001 0.0219451 | 0.0233033 0.9417139 | 0.3463438
factor(year)2003 0.0657877 | 0.0234240 2.8085580 | 0.0049784
factor(year)2005 0.0422628 | 0.0235964 1.7910693 | 0.0732884
factor(year)2007 0.0729919 | 0.0234565 3.1117934 | 0.0018606
factor(year)2009 0.0647433 | 0.0239121 2.7075569 | 0.0067804
factor(year)2011 0.0411850 | 0.0225570 1.8258156 | 0.0678842
factor(marital _status)2 -0.1185882 | 0.0151073 | -7.8497265 | 0.0000000
factor(marital _status)3 -0.5255272 | 0.0197736 | -26.5772565 | 0.0000000
factor(marital status)4 -0.4446700 | 0.0201541 | -22.0634511 | 0.0000000
factor(marital _status)b -0.3596434 | 0.0292096 | -12.3125004 | 0.0000000
factor(education)2 -0.0218209 | 0.0198973 | -1.0966781 | 0.2727876
factor(education)3 0.0025993 | 0.0187681 0.1384954 | 0.8898495
factor(education)4 0.0294296 | 0.0193499 1.5209166 | 0.1282873
factor(education)5 0.0800133 | 0.0324779 2.4636253 | 0.0137574
factor(hh size)2 -0.0604507 | 0.0184597 | -3.2747410 | 0.0010583
factor(hh_ size)3 -0.1070978 | 0.0205572 | -5.2097419 | 0.0000002
factor(hh_size)4 -0.1352898 | 0.0223149 | -6.0627627 | 0.0000000
factor(hh_ size)5 -0.0761222 | 0.0261616 | -2.9096912 | 0.0036195
factor(hh size)6 -0.0609511 | 0.0438796 | -1.3890545 | 0.1648226
factor(hh_ size)7 -0.1295010 | 0.0898495 | -1.4413097 | 0.1495036
factor(hh_ workers)1 0.0424444 | 0.0174297 2.4351743 | 0.0148882
factor(hh_ workers)2 0.0878256 | 0.0188040 4.6705731 | 0.0000030
factor(hh_ workers)3 0.0403690 | 0.0275326 1.4662227 | 0.1425941
factor(hh_ workers)4 0.0906973 | 0.0483622 1.8753769 | 0.0607469
factor(hh_ workers)5 -0.0379070 | 0.1071292 | -0.3538437 | 0.7234575
female 0.0984352 | 0.0089958 | 10.9423318 | 0.0000000
poly(age, 2)1 -30.3955611 | 1.5224937 | -19.9643262 | 0.0000000
poly(age, 2)2 27.6063336 | 1.2121694 | 22.7743191 | 0.0000000
imp hh rank:post 2001 0.0897253 | 0.0314065 2.8569058 | 0.0042797

3.5 Estimate the same specification, but separately on two different subgroups in the data. First estimate
the effect for those who have high access to internet, then for those who do not. Do you find any differences?
What do you conclude from this exercise?



Estimate | Std. Error t value | Pr(>[t|)
(Intercept) 0.2733015 | 0.1255861 2.1762090 | 0.0295492
imp_ hh rank 0.2800640 | 0.0405323 6.9096544 | 0.0000000
post__2001 -0.1503790 | 0.1058500 | -1.4206804 | 0.1554225
factor(year)1987 -0.0001510 | 0.0410329 | -0.0036795 | 0.9970642
factor(year)1989 -0.0119116 | 0.0406172 | -0.2932648 | 0.7693222
factor(year)1991 -0.1019043 | 0.1037739 | -0.9819836 | 0.3261177
factor(year)1993 -0.0209050 | 0.1039130 | -0.2011784 | 0.8405608
factor(year)1995 -0.0140621 | 0.1038587 | -0.1353961 | 0.8922998
factor(year)1997 -0.0004058 | 0.1029775 | -0.0039411 | 0.9968555
factor(year)1999 -0.0670409 | 0.1030058 | -0.6508461 | 0.5151520
factor(year)2001 -0.0080487 | 0.0323433 | -0.2488531 | 0.8034765
factor(year)2003 0.0827094 | 0.0325453 2.5413588 | 0.0110484
factor(year)2005 0.0235391 | 0.0327333 0.7191176 | 0.4720754
factor(year)2007 0.0638032 | 0.0324607 1.9655525 | 0.0493617
factor(year)2009 0.0168963 | 0.0330631 0.5110323 | 0.6093331
factor(year)2011 0.0436867 | 0.0317555 1.3757198 | 0.1689211
factor(marital status)2 -0.1250942 | 0.0198685 | -6.2960940 | 0.0000000
factor(marital status)3 -0.5890247 | 0.0291787 | -20.1868129 | 0.0000000
factor(marital_status)4 -0.4488229 | 0.0393736 | -11.3990689 | 0.0000000
factor(marital__status)b -0.3663070 | 0.1279757 | -2.8623176 | 0.0042091
factor(education)?2 -0.2540096 | 0.1173551 -2.1644519 | 0.0304394
factor(education)3 -0.1837640 | 0.1164916 | -1.5774872 | 0.1146965
factor(education)4 -0.1638767 | 0.1169829 | -1.4008602 | 0.1612687
factor(education)b -0.1554284 | 0.1290225 | -1.2046607 | 0.2283461
factor(hh__size)2 -0.1035725 | 0.0362430 | -2.8577223 | 0.0042706
factor(hh_ size)3 -0.1375580 | 0.0362543 | -3.7942560 | 0.0001484
factor(hh_ size)4 -0.1823835 | 0.0371067 | -4.9151062 | 0.0000009
factor(hh_ size)5 -0.1144005 | 0.0394115 | -2.9027179 | 0.0037027
factor(hh_ size)6 -0.0936666 | 0.0533378 | -1.7561028 | 0.0790835
factor(hh_ size)7 -0.6758218 | 0.2069484 | -3.2656538 | 0.0010936
factor(hh_ workers)1 0.0668731 | 0.0969255 0.6899429 | 0.4902367
factor(hh_ workers)2 0.1261134 | 0.0963368 1.3090892 | 0.1905165
factor(hh workers)3 0.0875970 | 0.0990779 0.8841224 | 0.3766389
factor(hh_ workers)4 0.1573078 | 0.1071165 1.4685667 | 0.1419633
factor(hh workers)5 -0.0263394 | 0.1430801 | -0.1840882 | 0.8539458
female 0.0653311 | 0.0131242 4.9779158 | 0.0000006
poly(age, 2)1 -32.6517319 | 1.4630655 | -22.3173414 | 0.0000000
poly(age, 2)2 10.1267923 | 1.2758511 7.9372837 | 0.0000000
imp_ hh_ rank:post_ 2001 0.2166007 | 0.0516744 4.1916411 | 0.0000278
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Estimate | Std. Error t value | Pr(>[t|)
(Intercept) -0.1423225 | 0.0436693 | -3.2590942 | 0.0011192
imp_ hh rank 0.3368182 | 0.0415337 8.1095111 | 0.0000000
post__2001 -0.0583974 | 0.0470543 | -1.2410659 | 0.2145934
factor(year)1987 -0.0255565 | 0.0418790 | -0.6102464 | 0.5417043
factor(year)1989 -0.0148224 | 0.0414182 | -0.3578708 | 0.7204431
factor(year)1991 -0.0442600 | 0.0440642 | -1.0044456 | 0.3151739
factor(year)1993 -0.0399125 | 0.0442129 | -0.9027326 | 0.3666768
factor(year)1995 -0.0510114 | 0.0446378 | -1.1427848 | 0.2531392
factor(year)1997 -0.0378289 | 0.0416246 | -0.9088117 | 0.3634586
factor(year)1999 -0.0634111 | 0.0419976 | -1.5098741 | 0.1310886
factor(year)2001 0.0310937 | 0.0346957 0.8961841 | 0.3701634
factor(year)2003 0.0273706 | 0.0348889 0.7845071 | 0.4327503
factor(year)2005 0.0430337 | 0.0349734 1.2304713 | 0.2185326
factor(year)2007 0.0683365 | 0.0346075 1.9746141 | 0.0483233
factor(year)2009 0.0979001 | 0.0353640 2.7683529 | 0.0056383
factor(year)2011 0.0369758 | 0.0321067 1.1516525 | 0.2494753
factor(marital status)2 -0.1166376 | 0.0248215 | -4.6990644 | 0.0000026
factor(marital status)3 -0.4514937 | 0.0308809 | -14.6204816 | 0.0000000
factor(marital_status)4 -0.4132895 | 0.0271761 | -15.2078407 | 0.0000000
factor(marital__status)b -0.3303903 | 0.0343595 | -9.6156988 | 0.0000000
factor(education)?2 -0.0051198 | 0.0215520 | -0.2375570 | 0.8122267
factor(education)3 -0.0044230 | 0.0211470 | -0.2091536 | 0.8343301
factor(education)4 0.0388998 | 0.0240481 1.6175790 | 0.1057664
factor(education) 0.1073623 | 0.0405543 2.6473720 | 0.0081173
factor(hh__size)2 -0.0105905 | 0.0246032 | -0.4304519 | 0.6668708
factor(hh_ size)3 -0.0806508 | 0.0302410 | -2.6669393 | 0.0076596
factor(hh_ size)4 -0.0667344 | 0.0359465 | -1.8564928 | 0.0633955
factor(hh_ size)5 -0.0575172 | 0.0574786 | -1.0006724 | 0.3169952
factor(hh_ size)6 -0.3074327 | 0.2043159 | -1.5046927 | 0.1324162
factor(hh_ size)7 0.0579644 | 0.1019486 0.5685643 | 0.5696571
factor(hh_ workers)1 0.0528043 | 0.0186232 2.8353977 | 0.0045807
factor(hh_ workers)2 0.0924111 | 0.0231395 3.9936581 | 0.0000653
factor(hh_ workers)3 0.0463531 | 0.0600011 0.7725381 | 0.4398033
factor(hh_ workers)4 -0.1566388 | 0.1792052 | -0.8740752 | 0.3820860
factor(hh workers)5 1.8865660 | 0.9704498 1.9440119 | 0.0519056
female 0.1262843 | 0.0134912 9.3604633 | 0.0000000
poly(age, 2)1 -12.8716786 | 1.5853241 | -8.1192727 | 0.0000000
poly(age, 2)2 19.0490686 | 1.1322162 | 16.8245861 | 0.0000000
imp_ hh_rank:post_ 2001 | -0.0073654 | 0.0516588 | -0.1425783 | 0.8866244

3.6 Test for parallel pre-trends using the event study design. What do you find?
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None of the coefficients in the pre-treatement period are statistically significant as shown by
the confidence intervals. This suggests that the parallel trends assumption holds.

3.7 (Extra credit): What do you think of the research design used in this paper? Do you have any suggestions
for how it could have been improved, or extra falsification tests the author could have tried?

The authors find a clever way to estimate the Diff-in-Diff. However, it is not clear exactly who
is in the treatment group and who is in the control group. Another problem they face is their
measure of income. They do not observe direct income but rather impute the rank based on
a binned question. Binned questions tend to be biased since they normally have a reference
number to which individuals tend to agglomerate. Another porblem is that the definition of
these bins has changed over the years as they mention i page 1036.

A possible solution would be to define clear treatment and control groups, for example, people
above the 5th decile are treated and the rest are control. Another solution to the second
problem could be to directly impute income from other surveys.

4 Appendix

# you can include your libraries here:
library(tidyverse)

library(knitr)

library (haven)

library(fect)

library(plm)

library(fixest)
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# and any other options in R:
options(scipen=999)

#2 ————-
## 2.2
(mean(data$Y[data$G == 1 & data$T == 1]) - mean(data$¥Y[data$G == 1 & data$T == 0])) - (mean(data$Y[data

## 2.3
Im(Y~G*T, data = data) %>% summary()

## 2.4

data %>% group_by(G, T) %>%
summarise(Y = mean(Y)) %>%
ggplot() + aes(x = T, y = Y, color = factor(G)) +
geom_point(size = 5) +
geom_line() +
geom_line(data = . %>% filter(G == 0), aes(y
labs(color = "Treated") +
scale_x_continuous(breaks = c(0 , 1), labels
theme_minimal() +

Y + 10000), color = "grey") +

c("Before", "After")) +

Xlab(ll ||) +
ylab(ll ||)
## 2.6

### OLS (Dummy)
Im(Y~-D + factor(P) + factor(ID), data = data) ’%>% summary()

### Fixed Effects (De-Meaned)
plm(Y ~ D, data = sim_data,
index c("ID", "P"),
model = "within", effect = "twoways") %>% summary()

feols(Y ~ D | ID + P, data = data) %>’% summary()

# 2.7

out.fect <- fect(Y~D, data = sim_data, index = c("ID", "P"),
method = "fe", force = "two-way", se = TRUE, nboots = 200)

print(out.fect)
plot(out.fect)

#3 -——-
df <- read_dta("./Norway-MSD.dta")

## 3.1
df %>% group_by(year) %>%
summarise (
happines = mean(po_happy, na.rm = T)
) W%
ggplot() + aes(x = year, y = happines) +
geom_vline(xintercept = 2001, color = "pink", linetype='dashed', alpha = 0.75, size = 1) +
geom_point (color = "blue", alpha = 0.75) +
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geom_line(color = "blue", alpha = 0.75) +
theme_minimal ()

## 3.4

1m(po_happy~imp_hh_rank#*post_2001+factor(year)+factor(marital_status)+
factor (education)+factor (hh_size)+factor (hh_workers)+
female+poly(age,2), data = df) %>/, summary()

## 3.5

1m(po_happy~imp_hh_rank#*post_2001+factor(year)+factor(marital_status)+
factor(education)+factor (hh_size)+factor (hh_workers)+
female+poly(age,2), data = filter(df, higher_internet == 1)) %>’ summary()

1m(po_happy~imp_hh_rank*post_2001+factor(year)+factor(marital_status)+
factor(education)+factor (hh_size)+factor (hh_workers)+
female+poly(age,2), data = filter(df, higher_internet == 0)) %>/, summary()

## 3.6
df <- df %>% mutate(
year = factor(year, levels = c(1999, 1987, 1989, 1991, 1993, 1995, 1997, 2001, 2003, 2005, 2007, 2009
)
regl <- 1lm(po_happy~imp_hh_rank*factor(year)+factor(marital_status)+
factor(education)+factor (hh_size)+factor (hh_workers)+
female+poly(age,2), data = df)
coefs <- coef(regl) [38:50]
upper <- confint.lm(regl, vcov. = vcovHC(regl, type = "HCO0")) [38:50, 2]
lower <- confint.lm(regl, vcov. = vcovHC(regl, type = "HC0"))[38:50, 1]
estudy <- data.frame(
cbind(
coefs, lower, upper
)
) %>% mutate(
year = c(1987, 1989, 1991, 1993, 1995, 1997, 2001, 2003, 2005, 2007, 2009, 2011, 2013)

)
new_row <- data.frame(
coefs = 0,
lower = 0,
upper = O,
year = 199

estudy <- rbind(estudy, new_row) 7>}, data.frame()

estudy 7>% ggplot() + aes(x = year, y = coefs) +
geom_vline(xintercept = 2001, color = "pink", linetype='dashed', alpha = 0.75, size = 1) +

geom_hline(yintercept = 0, color = "grey") +

geom_point(color = "blue", size = 3, alpha = 0.75) +

geom_line(color = "blue") +

geom_errorbar(aes(ymin = lower, ymax = upper), color = "blue", width = 0) +

theme_minimal ()
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