MY457: Problem Set 2 - Selection on Observables Solutions

Pedro Torres-Lopez, Michael Ganslmeier, Daniel de Kadt

Wed/13/Mar

This problem set is formative and will not contribute to your final grade. However, it is designed to build
and deepen your conceptual understanding of the material and to practice applying the material in R. Using
tools and resources such as ChatGPT and Stack Overflow is allowed and encouraged. Bear in mind that you
are ultimately responsible for the work you submit, and that these tools often provide incorrect solutions.
Make sure that however you use these tools it aligns with your best interests, and enhances your learning in
this class.

This problem set must be submitted on Moodle by 12pm (noon) on Wed/20/Mar. You must also use the
provided .Rmd template to produce a .pdf with your answers. If your submission is late, is not a .pdf, or is
not appropriately formatted, you will not receive feedback on your work.

1 Concepts

This question reviews some of the concepts covered in class. Mathematical notation can be a useful tool to
explain concepts, but it’s important that you understand and can explain the concepts clearly and concisely.
If you want to support your explanations with mathematical notation, this page provides a tutorial on
including mathematical notation in Rmarkdown.

Consider a simple study of the effect of a treatment D; € 0,1 on Y; for all ¢ € 1,..., N where believe that the
conditional independence assumption holds, conditional on observable characteristics X.

1.1. Explain the notation (Y7,Yp) L D|X. Does this mean that (Y7,Yp) L X7

The first part represents the conditional ignorability assumption. It states that, given a certain
value of X = x, there is no association between potential outcomes and treatment status.

This assumption does not mean that (Y7,Y;) L X. Conditional ignorability refers to potential
outcomes being independent of treatment for a given value of X, however, potential outcomes
may well be associated with X. In fact, if X is a candidate confounder, we would expect this!

1.2 Consider a regression-based estimator of the average treatment effect (ATE) through the following
specification:

Yi=a+7Di+ BX; + &

Given conditional ignorability and common support, what are the underlying assumptions for the estimation
of the ATE using regression?
1- Constant or homogeneous treatment effects. 2- Linearity in the relationship between

outcomes Y, treatment D and covariates X.

1.3 When using a matching procedure, it is possible to use the same observation as a control unit for multiple
treated units. What are the advantages of using matching with replacement compared to matching without
replacement?


https://github.com/LSE-MY457/lse-my457.github.io/tree/main/psets/template
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It is often the case that one control unit is the best match for multiple treated units. When
this is the case, matching with replacement will ensure that each treated observations has its
best match as the counterfactual.

However, by using the same unit multiple times, we introduce some bias. The bias may arise
from correlation between observations, or beacause there is not enough variance in the missing
potential outcome.

2 Simulations

In this question we will use simulated data to test some of our intuitions about randomised experiments. The
advantage of using a simulated dataset is that we have explicit control over the data generating process, and
know the ‘true’ answer to any question we pose.

2.1. Suppose the government wants to implement an intensive course (D), designed for recently unemployed
people to help them get back into the job market and improve their salaries (Y). As the resident data scientist
you argued for D to be randomized, but unfortunately you were overruled by your seniors who have political
machinations. They do, however, let you measure two covariates, X1 and X2. Below we simulate some data
from this setting. Draw a DAG that represents the simulated data generating process (there are multiple
packages available for drawing DAGs in RMarkdown). Using your DAG, explain in words what the code
below does.

set.seed(123)

n_obs <- 10000

tau <- 25000

# Create the dataset

Ul <- rbinom(n_obs, 1, 0.5)

U2 <- rbinom(n_obs, 1, 0.5)

X2 <- sample(1:50, n_obs, replace = TRUE)
X1 <- 10 + 1500*%U1 + 1500%U2 + rnorm(m_obs, mean = 0, sd = 100)

YO <- 20000 + 1000*X2 + 1500#U2 + rnorm(n_obs, mean = 0, sd = 1000)
Y1 <- YO + tau

prob_d <- pnorm(X2, mean = 50, sd = 25) + 0.5xU1
prob_d <- pmin(prob_d, 1)
D <- rbinom(n_obs, 1, prob_d)

sim_data <- data.frame(U1l, U2, X1, X2, YO, Y1, D)

sim_data$Y <- ifelse(sim_data$D == 1, Y1, YO)
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2.2 Generate a clear and compelling graph that shows the distribution of just Y{, split by treatment status.
Do you think we can assume that (Y7,Yp) L D?
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We can clearly see that Y, is different for those who have treatment compared to those in
control.

2.3 Check for balance in the covariates X1 and X2. What do you find?

Control | Treatment | P.value
1143.754 1913.499 0

Control | Treatment | P.value
21.63144 30.02665 0

The t-test suggest that the difference between the two groups is statistically significant,
suggesting that there is no balance in covariates between the two groups.

2.4 As the resident data scientist you are faced with the task of estimating the effect of the course (D) on
observed salaries (V). First, naively estimate the ATE using a linear regression with only D as a covariate.
Given what you know about the true ATE, do you find any evidence of selection bias from this approach?

Estimate | Std. Error t value | Pr(>[t])
(Intercept) | 42363.46 185.7472 | 228.0706 0
D 33405.94 2779787 | 120.1745 0

QOur true ATE is set to be 25,000. Our estimate is 33,405, almost 10,000 above the true one.
We find evidence for selection bias since there is a big difference between the true and the
observed ATE, though ideally we’d want to see this over repeated sampling.

2.5 Now include the variable X2. What happens to the estimate of the ATE? Why? Is X2 a good control or
a bad control?



Estimate | Std. Error t value | Pr(>[t|)
(Intercept) | 20717.97 | 25.8608900 | 801.1314 0
D 25005.27 | 26.2748734 951.6800 0
X2 1000.65 | 0.9088811 | 1100.9689 0

When we include X2 in the regression we get an estimate closer to the true ATE. X2 is a good
control beacause it affects both the treatement status and potential outcomes. Controlling for
X2 will account for the correlation between D and X2, effectively removing the selection bias
part.

2.6 Now add to your linear regression the variable X1. What happens to the estimate of the ATE? Is X1 a
good control or a bad control?

Estimate | Std. Error t value | Pr(>]t|)
(Intercept) | 43494.5569201 | 244.452083 | 177.926718 0
D 34167.1658585 | 297.335067 | 114.911323 0
X1 -0.9889314 0.139409 -7.093739 0

We don’t find the same when we control for X1. X1 is related to D, but it is not related to Y.
Controlling for X1 opens a back-door path — we are conditioning on a collider. This is often
called M-bias. X1 is a bad control.

2.7 (Extra credit): Show that your answers to Questions 2.4, 2.5, and 2.6 were not due to chance. Over at
least 1,000 repeat simulations (note: you will want to remove the set.seed step), generate a fresh draw of
the data and estimate the sample-specific ATE using the three different regression specifications. Calculate
the difference between the estimated ATEs and what you know to be the true (fixed) value of the ATE, and
store those differences. Finally, produce a histogram that shows the three distributions of the differences over
your repeated samples, along with their means. What do you conclude?
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3 Replication

In this section, we will use real-world data to reinforce what we have learned. We will analyse the dataset
employed in Dollars on the Sidewalk: Should U.S. Presidential Candidates Advertise in Uncontested States?.

In the USA, political parties spend over 750 million dollars on television adverts during campaigns. However,
because of the nature of the US political system, many parties only advertise in states they deem competitive.
However, beyond votes, advertising might also increase the amount of financial contributions people make to
political campaigns. The authors study whether ads lead to greater levels of contributions to campaigns. To
do this, they consider areas in non-competitive that are exposed to ‘spillover’ ads from bordering competitive
states as treated units, and areas in non-competitive states that are not exposed to these ads as control units.
They use a matching procedure to estimate the ATT of being exposed to at least a thousand ads.

3.1 In your own words, explain how the identification strategy that the authors use to estimate the effect of
ad exposure on campaign contributions works. In your view, is this a case of selection-on-observables? (Hint:
Consult pages 324 and 328 in the paper.)

The authors study zip-codes in non-competetitive states, where they shouldn’t get much
exposure to ads. They then focus on zip-codes that get spillover ads (treated) and compare
them to zip-codes that do not have spillover ads (control). They match these two types of
zip-codes and estimate an ATT. This does seem like selection-on-observables, but it is a little
unclear what the observables are that drive the design.

3.2 Read into R the replication data file dollars_on_the_sidewalk.dta. These data are at the zip code
level, and include data from both competitive and non-competitive states, indicated by the dummy variable
NonComp which takes a value of 1 if non-competitive. For only those zip codes in non-competitive states,
define a binary treatment variable (Treated) based on whether the zip code received more than a 1000 ads


https://onlinelibrary.wiley.com/doi/epdf/10.1111/ajps.12073

(TotAds). How many units are in the treated group, and how many are in the control group?

Varl Freq
0 11165
1 6237

‘We have 11,165 zip codes in control and 6,237 in treatment.

3.3 What is the mean campaign contribution (Cont) for each level of Treated? Estimate the naive ATE
using these two quantities.

D Cont
0 | 19.91722
1| 20.16180
Diff.
0.244578

When we estimate it naively, we find an ATE of 0.24.

3.4 The authors use propensity score matching to more credibly estimate the average effect of Treated on
Cont for the treated. Using whatever pre-treatment covariates you deem appropriate, fit a logistic regression
to estimate the propensity score for each unit in the data. (Hint: Use family = binomial(link = "logit")
in the glm function. To predict probabilities, use predict () but remember to set type = "response".)

We estimate a logit model using Income, Percent of Hispanics, Percent of Blacks, Population
Density and State as covariates.

3.5 In a single well-formatted and compelling graph, show the propensity score distributions for the two
groups. What do you conclude?
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The density of both groups shows overlapping p-scores. This means that we are able to find a
similar unit for treatment and control.

3.6 Implement 1:1 matching with replacement using the propensity scores. How many observations are left
in your matched dataset? Explain what has happened. (Hint: You can use a canned package like MatchIt to
estimate new p-scores and find the nearest matches, or the Matching package using your previously estimated
p-scores, or for extra credit you can hand-roll your own matching function using your previously estimated
p-scores.)

## [1] 7835
We end up with 7,835 observations. Out of which 6,237 are in treatment and 1,598 in control.

3.7 Show balance in your matched data for a range of different pre-treatment covariates. Again, MatchIt or
Matching or similar packages may help. What do you find?
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We find balance for almost all variables. In the demographics, the only covariate for which we
do not find balance is the percentage of college graduates.

3.8 Based on your matched sample, use linear regression to estimate the ATT as the difference-in-means
between the treatment categories.

Estimate | Std. Error t value | Pr(>|t])
(Intercept) | 11.807596 2.725609 | 4.332094 | 0.0000150
D 8.354206 3.054887 | 2.734702 | 0.0062577

We find an effect of 8.35 when estimating the ATT. We know we are estimating the ATT
instead of the ATE because we match the units in treatment with some control units, thus
focusing on the effect on the treated.




3.9 (Extra Credit): What do you think of the research design used in this paper? Are there any weaknesses
or concerns? Can you come up with any improvements to the design?

Although the design presents a way of estimating the effect, it has some possible flaws. One
major concern is that people living close to the border are different from those living closer to
the interior. The authors don’t seem to deal with space in any real way. Further, individuals
who live in border zip codes may work or study in competitive states. If this is the case,
individuals would be influenced by events happening in competitive states while living in
non-competitive states, again suggesting meaningful differences. An improvement might be
to only study people who live on borders, but take as treated those who live on competitive
borders and those who live on non-competitive borders as control.

4 Appendix

# 2-————-
## 2.1
dag <- dagitty('
U1l -> X1
U2 -> X1
U2 ->Y
X2 =>Y
D->Y
U1 ->D
X2 -> D
D)
plot(dag)
## 2.2

ggplot(sim_data) + aes(x = YO, fill = factor(D), color = factor(D)) +
geom_density(alpha = 0.5) +
xlab("YO") +
ylab("Density") +
labs(fill = "D", color = "D") +
theme_minimal ()

## 2.3
t.test(X1~D, data = sim_data)

t.test (X2~D, data sim_data)

## 2.4
summary (lm(Y~D, data = sim_data))

## 2.5
summary (lm(Y~D+X2, data = sim_data))

## 2.6
summary (lm(Y~D+X1, data

sim_data))

## 2.7
ATE1 <- NULL
ATE2 <- NULL
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ATE3 <- NULL

set.seed(321)

for (i in 1:1000){
D <- rbinom(n_obs, 1, prob_d)
sim_data <- data.frame(U1l, U2, X1, X2, Y0, Y1, D)
sim_data$Y <- ifelse(sim_data$D == 1, Y1, YO)

regl <- 1m(Y~D, data = sim_data)
reg2 <- 1lm(Y~-D+X2, data = sim_data)
reg3 <- 1lm(Y~-D+X1, data = sim_data)

ATE1[i] <- coef(regl) [2]

ATE2[i] <- coef (reg2) [2]

ATE3[i] <- coef (reg3) [2]
}

ggplot(data.frame(ATE1)) + aes(x = ATEl - tau) +
geom_histogram(color = "white", fill = "lightblue") +
geom_vline(xintercept = mean(ATEl-tau), color = '"red") +
xlab("Just D") +
theme_minimal ()

ggplot(data.frame(ATE2)) + aes(x = ATE2 - tau) +
geom_histogram(color = "white", fill = "lightblue") +
geom_vline(xintercept = mean(ATE2-tau), color = "red") +
xlab("D + X2") +
theme_minimal ()

ggplot(data.frame (ATE3)) + aes(x = ATE3 - tau) +
geom_histogram(color = "white", fill = "lightblue") +
geom_vline(xintercept = mean(ATE3-tau), color = '"red") +
xlab("D + X1") +
theme_minimal ()

#3 ——————
## 3.2
data <- read_dta("./dollars_on_the sidewalk.dta")

data <- data %>, filter(NonComp == 1) %>%
mutate(D = ifelse(TotAds > 1000, 1, 0)) %>%
na.omit ()

table (data$D)
## 3.3
data %>% group_by (D) %>%

summarise (
Cont = mean(Cont, na.rm = T)
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mean(data$Cont [data$D == 1]) - mean(data$Cont[data$D == 0])

## 3.4

p_score <- glm(D~Inc+PercentHispanic+PercentBlack+per_collegegrads+density+factor(State),
data = data,
family = binomial(link = "logit"))

data$p_score <- predict(p_score, type = "response")

## 3.5

ggplot(data) + aes(x
geom_density(alpha
xlab("P-Scroe") +
ylab("Density") +
labs(fill = "D", color = "D") +
theme_minimal ()

p_score, fill = factor(D), color = factor(D)) +
0.5) +

## 3.6
m_out <- MatchIt::matchit(D~Inc+PercentHispanic+PercentBlack+per_collegegrads+density+factor(State),
data = data,
method = "nearest",
link = "logit",
ratio = 1,
replace = T,
distance = "mahalanobis")

m_data <- MatchIt::match.data(m_out)
dim(m_data) [1]

## 3.7
plot (summary(m_out))

## 3.8
summary (Im(Cont~D, data = m_data))
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