
MY457: Problem Set 1 Solutions

Pedro Torres-Lopez, Michael Ganslmeier, Daniel de Kadt

This problem set is formative and will not contribute to your final grade. However, it is designed to build
and deepen your conceptual understanding of the material and to practice applying the material in R. Using
tools and resources such as ChatGPT and Stack Overflow is allowed and encouraged. Bear in mind that you
are ultimately responsible for the work you submit, and that these tools often provide incorrect solutions.
Make sure that however you use these tools it aligns with your best interests, and enhances your learning in
this class.

This problem set must be submitted on Moodle by 12pm (noon) on Thu/14/Mar. You must also use the
provided .Rmd template to produce a .pdf with your answers. If your submission is late, is not a .pdf, or is
not appropriately formatted, you will not receive feedback on your work.

1 Concepts
This question reviews some of the concepts covered in class. Mathematical notation can be a useful tool to
explain concepts, but it’s important that you understand and can explain the concepts clearly and concisely.
If you want to support your explanations with mathematical notation, this page provides a tutorial on
including mathematical notation in Rmarkdown.

Consider a simple study of the effect of a treatment Di ∈ {0, 1} on Yi for all i ∈ {1, 2, 3, . . . , N}.

1.1. Explain the notation Y1i. For the same unit i, when would this quantity be equal to Yi?

Yi1 or Yi1 or Yi(1) typically refers to the potential outcome under treatment for unit i. Yi by
contrast refers to the realized outcome of unit i. For the same unit i, we would expect Y1i and
Yi to be the same when individual i got treated, hence Di = 1.

1.2. What is the difference between E[Y0i|Di = 1] and E[Y0i|Di = 0]? When would you expect these
quantities to be equal? When would you expect them to be unequal?

E[Y0i|Di = 1] is the expected value of the potential outcome without treatment for the treated
group. E[Y0i|Di = 0] is the expected value of potential outcomes without treatment for the
control group.

When there are no confounders, and the randomization process is done correctly, we expect
these quanitites to be equal. However, if there is some sort of selection bias, we could expect
these to be different.

1.3. Explain how randomly assigning individuals into treatment (D = 1) and control (D = 0) allows for the
identification of the average treatment effect (ATE).

Random assignment ensures that individuals in both treatment and control are similar on
average in both observed and unobserved characteristics. This is called the balancing principle,
both in terms of potential outcomes and covariates.

If balance in covariates holds, then we suppose that the expected value of potential outcomes
of both groups are the same, effectively eliminating selection bias. If there is no selection bias,
we can identify the ATE as:
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ATE = E[Yi|Di = 1]− E[Yi|Di = 0]

2 Simulations
In this question will use simulated data to test some of our intuitions about randomised experiments. The
advantage of using a simulated dataset is that we have explicit control over the data generating process, and
know the ‘true’ answer to any question we pose.

2.1. Suppose we are planning a trial to test the effectiveness of a policy on the wages of workers, with what
we assume is a constant average treatment effect τAT E .

The real trial data that we collect will include information on participant characteristics, specifically age and
education, along with actual treatment assignment (D), and the outcome variable (Y ).

To explore some of the properties of our proposed trial, we first simulate some data. Explain in words what
the code below does.
set.seed(123)

n <- 500

tau <- 5000

data <- data.frame(
Age = rnorm(n, mean = 42, sd = 10),
Education = sample(1:4, n, replace = TRUE),
Y0 = rnorm(n, mean = 50000, sd = 10000)

)

data <- data %>% mutate(
Y1 = Y0 + tau,
D = sample(c(0, 1), n, replace = TRUE),
Y = ifelse(D == 1, Y1, Y0)

)

We define a set with 500 observations. We assign each observation a value for Age and
for Education, as well as an expected outcome, when not treated, Y0 with mean 50,000 and
standard deviation 10,000.

Additionally, we set a treatment effect τ to be of 5,000, hence our outcome under treatment,
Y1, is 5,000 higher than Y0. This is a homogenous and constant treatment effect.

Finally, we randomly assign individuals to treatment or control D, and observe either Y0 or Y1
as Y , depending on treatment.

We are simulating an RCT, where treatment status is independent of both potential outcomes
and covariates.

2.2. Randomisation implies the balancing principle. One way of testing for balance is by showing that
the means of the two groups is statistically indistinguishable. Using a t-test, assess whether both age and
education are balanced across conditions.
Variable Control Treatment P.Value
Age 41.7782408172098 42.9809180589045 0.168905352781632
Education 2.48106060606061 2.48106060606061 0.592515711377063
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For both Age and Education we find no evidence that the two groups have different means.
On average, we expect treated and control units to be very similar between each other, this
suggests that the randomization is not conditional on any covariate and there is balance in the
covariates.

2.3. Let’s look at the difference in potential outcomes by treatment condition. One attractive way of
doing this is through a histogram of our potential outcomes, as shown below.
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Calculate the difference between the potential outcomes as a difference-in-means (do not worry about
statistical inference). What do you find? Is this surprising or unsurprising?

Diff.
5000

When we look at the difference in means, we have a difference of exactly 5,000. This is not
surprising since we set τ to be exactly 5,000, and when we use potential outcomes there is
no ‘sampling error’ (in terms of which potential outcome is revealed as observed data – there
may be sampling error if we are concerned about population-level inferences).

2.4. Let’s assess the effect of our intervention on the realised outcome Y . First, generate a plot that
shows the distribution of Y conditional on treatment status D. Here is a link to an introduction to ggplot for
plotting. You can use any other package to generate this plot if you wish, including base R.
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The plot shows that the distribution of Y for individuals under treatment is slightly higher
than that of individuals under control.

Second, estimate the average treatment effect (ATE). Since we have a randomized controlled trial, one
obvious estimator is the difference-in-means between the two groups. An alternative estimator would be
linear regression (OLS). Implement both estimators. What do you notice? How does your result compare to
the ‘ground truth’ answer you calculated in Question 2.3?

Diff.
4181.018

Estimate Std. Error t value Pr(>|t|)
(Intercept) 50612.031 625.2493 80.946961 0.0000000
D 4181.018 910.0856 4.594093 0.0000055

Both estimators give the same result. We find a difference of 4,181, lower than the true ATE.

The difference between the true ATE and our estimated ATE is probably due to chance.

2.5. (Extra credit): Show that the answer to Question 2.4 was not due to chance (a ‘lucky draw’). Over at
least 1,000 repeat simulations (note: you will want to remove the set.seed step), generate a fresh draw of
the data and estimate the sample-specific ATE with observed data. Calculate the difference between this and
what you know to be the true (fixed) value of τAT E and store that difference. Finally, produce a histogram
that shows the distribution of that difference over your repeated samples, along with its mean. What do you
conclude?
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When we replicate the exercise with random selections of the data, we find that the difference
between the true ATE and the one we estimate converges to 0 on average. This suggests that
our previous finding (of a large difference between the ATE and the estimated ATE was indeed
due to random chance given our particular draw from the data generating process.

3 Replication
In this question we will use real-world data to reinforce what we have learned. We will analyse the dataset
employed in How to Elect More Women: Gender and Candidate Success in a Field Experiment.

In the USA, women tend to be underrepresented in legislative bodies. The authors designed a field experiment
to test whether messages from party leaders can affect women’s electoral success. The general belief is that
there are two factors that explain why few women are elected. The first factor is related to the so-called
‘supply side’, with fewer female candidates vying for office. However, particularly among conservatives, voters’
biases, also called the ‘demand side’, may play an important role. In the experiment messages are sent to
leaders of precinct-level caucus meetings to see if tackling the demand side, the supply side, or both jointly,
can increase the number of women who are elected.

The messages were divided into 4 categories: 1) Placebo control, 2) Supply messages, 3) Demand messages,
and 4) Supply+Demand messages. In the data, group 1 is the control group receiving a placebo message
unrelated to the aforementioned factors. Groups 2 to 4 represent the different treatment groups with messages
relating to both factors.

3.1. Read into R the replication data file how_to_elect_more_women.dta. These data are at the precinct
level. Using prop_sd_fem2014, the proportion of state delegates elected from the precinct in 2014 who were
women, create a new dummy variable called sd_onefem2014 that takes a value of 1 if at least one women
was elected within the precinct in 2014, and 0 otherwise. This will be our outcome variable.
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data <- read_dta("./how_to_elect_more_women.dta")

data$sd_nofem2014 <- ifelse(data$prop_sd_fem2014 == 0, 1, 0) # Create variable for counties with 0 W elected

data$sd_onefem2014 <- 1 - data$sd_nofem2014 # Create dummy for at least 1 W elected

data <- data %>%
select(sd_onefem2014, condition, age, gender, yearborn, religion,

race, income)

head(na.omit(data)) %>% kable()

sd_onefem2014 condition age gender yearborn religion race income
1 3 39 1 19 3 5 4
0 1 64 1 44 3 5 4
1 2 55 1 35 3 5 5
0 1 45 1 25 3 5 4
0 3 48 2 28 3 5 4
0 1 66 1 46 3 5 6

3.2. Show the proportion of precincts at each treatment/control group.

Group Frequency
1 25.09276
2 25.00000
3 24.95362
4 24.95362

We have around 25% of total observations in each of the categories.

3.3. Take two pre-treatment variables of your choice that are not the outcome (sd_onefem2014) and test
whether there is balance between the treatment groups.

Group.1.vs. P.value
2 0.4467990
3 0.6043137
4 0.5634717

Groups P.value
2 - 3 0.791385462964775
2 - 4 0.854318981692281
3 - 4 0.93992761133711

We first look at Age. Comparing the control vs. the different treatment groups, we find no
evidence for a statistical difference in the group means. This holds when we compare treatment
groups.

Group.1.vs. P.value
2 0.6422008
3 0.6588426
4 0.6279856

Groups P.value
2 - 3 0.35928482683312
2 - 4 0.981254139125381
3 - 4 0.350554660928727
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Comparing the control vs. the different treatment groups for Gender, we find no evidence for
a statistical difference in the group means. This holds when we compare treatment groups.

3.4. Estimate the ATE of the different treatments. Hint: you can use three separate linear regressions, where
you subset the data to just the control condition and one of the treatments, to estimate the effect of each
treatment level. What do you find? Is there any effect of treatment. Why do you think this is happening?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3752759 0.0230496 16.281242 0.0000000
factor(condition)2 0.0587666 0.0323009 1.819347 0.0691831

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3752759 0.0230391 16.288681 0.0000000
factor(condition)3 0.0574595 0.0327097 1.756647 0.0793192

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3752759 0.0230948 16.249396 0.0000000
factor(condition)4 0.0784487 0.0328447 2.388471 0.0171253

We do not find a treatment effect of treatment status 2 and 3 compared to the control group
that is statistically significant at conventional levels. However, we do find an effect for treat-
ment status 4. However, it is worth noting that the substantive point estimates are not that
different between the three conditions, suggesting that it is possible our first two results are
false negatives, or our third result is a false positive. We should carefully consider whether
our tests were appropriately powered. Taking the results at face value (demand and supply
don’t work independently, but do work together, we might argue that:

The lack of an effect in individuals’ efforts may come from a setting where there is asymmetric
information. Suppose you only send messages trying to tackle the supply part, you could
promote more women running for office. However, if there are biases towards voting for men
(demand side), more female candidates will likely not result in more elected candidates.

If one only tackles the demand side, the opposite happens, even though more voters are more
sensitive to the topic and want to elect more women, if there are no canditates this is not
possible.

Tackling both factors can effectively increase the number of women running for post and
reduce the biases resulting in an increase of elected women.

3.5. (Extra credit): Simultaneously estimate the ATE of the different treatments using a single linear
regression. Do any of your conclusions change?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3752759 0.0232029 16.173663 0.0000000
factor(condition)2 0.0587666 0.0325158 1.807326 0.0708777
factor(condition)3 0.0574595 0.0329424 1.744243 0.0812867
factor(condition)4 0.0784487 0.0329985 2.377339 0.0175415

Running a regression with the three treatment groups simultaneously yields the same results
as the three separate regressions. However, we see a difference in the standard deviation of
the effect. Note that these regressions can sometimes be subject to ‘contamination bias.’

3.1 Appendix

knitr::opts_chunk$set(echo=FALSE, warning=FALSE, message=FALSE, linewidth=60)

# you can include your libraries here:
library(tidyverse)
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library(knitr)
library(haven)

# and any other options in R:
options(scipen=999)

# 2 ------
## 2.2
# Age
t.test(data$Age[data$D == 1], data$Age[data$D == 0])

# Education
t.test(data$Education[data$D == 1], data$Education[data$D == 0])

# 2.3
data %>%

ggplot() +
geom_histogram(aes(x = Y0, fill = "0"), alpha = 0.75) +
geom_histogram(aes(x = Y1, fill = "1"), alpha = 0.75) +
labs(fill = "D") +
xlab("Potential Outcome") +
ylab("Density") +
theme_minimal()

# Difference in means
mean(data$Y1) - mean(data$Y0)

# 2.4
data %>%

ggplot() + aes(x = Y, fill = factor(D)) +
geom_histogram(alpha = 0.75) +
labs(fill = "D") +
xlab("Outcome") +
ylab("Frequency") +
theme_minimal()

# Difference in means
mean(data$Y[data$D == 1]) - mean(data$Y[data$D == 0])

# OLS
summary(lm(Y~D, data = data))

# 2.5
ATE <- NULL

set.seed(123)
for (i in 1:1000) {

n <- 500

tau <- 5000

data <- data.frame(
Age = rnorm(n, mean = 42, sd = 10),
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Education = sample(1:4, n, replace = TRUE),
Y0 = rnorm(n, mean = 50000, sd = 10000)

)

data <- data %>% mutate(
Y1 = Y0 + tau,
D = sample(c(0, 1), n, replace = TRUE),
Y = ifelse(D == 1, Y1, Y0)

)

ATE[i] <- mean(data$Y[data$D == 1]) - mean(data$Y[data$D == 0])
}

data.frame(ATE) %>%
ggplot() + aes(x = ATE - tau) +
geom_histogram(fill = "lightblue", alpha = 0.75) +
geom_vline(xintercept = mean(ATE - tau), color = "red") +
ylab("Frequency") +
xlab("ATE - tau") +
theme_minimal()

# 3 -----
data <- read_dta("./how_to_elect_more_women.dta")

data$sd_nofem2014 <- ifelse(data$prop_sd_fem2014 == 0, 1, 0) # Create variable for counties with 0 W elected

data$sd_onefem2014 <- 1 - data$sd_nofem2014 # Create dummy for at least 1 W elected

data <- data %>%
select(sd_onefem2014, condition, age, gender, yearborn, religion,

race, income)

# 3.2
prop.table(table(data$condition)) * 100

# 3.3
# Age
## Control vs Treatment
t.test(data$age[data$condition == 1], data$age[data$condition == 2])
t.test(data$age[data$condition == 1], data$age[data$condition == 3])
t.test(data$age[data$condition == 1], data$age[data$condition == 4])

## Different tretament status
t.test(data$age[data$condition == 2], data$age[data$condition == 3])
t.test(data$age[data$condition == 2], data$age[data$condition == 4])
t.test(data$age[data$condition == 3], data$age[data$condition == 4])

# Gender
## Control vs Treatment
t.test(data$gender[data$condition == 1], data$gender[data$condition == 2])
t.test(data$gender[data$condition == 1], data$gender[data$condition == 3])
t.test(data$gender[data$condition == 1], data$gender[data$condition == 4])
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## Different tretament status
t.test(data$gender[data$condition == 2], data$gender[data$condition == 3])
t.test(data$gender[data$condition == 2], data$gender[data$condition == 4])
t.test(data$gender[data$condition == 3], data$gender[data$condition == 4])

# 3.4
summary(lm(sd_onefem2014~factor(condition), data = data[data$condition == 1 | data$condition == 2, ]))

summary(lm(sd_onefem2014~factor(condition), data = data[data$condition == 1 | data$condition == 3, ]))

summary(lm(sd_onefem2014~factor(condition), data = data[data$condition == 1 | data$condition == 4, ]))

# 3.5
summary(lm(sd_onefem2014~factor(condition), data = data))
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